Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.13.] Quòd Ariſtotelisratio in 6. quæſtione poſit a non ſit admittenda. CAP. XIII.
[3.14.] Quòdrationes ab Ariſtotele de octaua quæstione confictæ ſufficient es non ſint. CAP. XIIII.
[3.15.] Quod Aristotelis ratio none queſtionis admittendanon ſit. CAP. XV.
[3.16.] Quod Aristotelis rationes de decima queſtione ſint reijciende. CAP. XVI.
[3.17.] De uer a cauſa .12. questionis mechanice. CAP. XVII.
[3.18.] De decimatertia questione. CAP. XVIII.
[3.19.] De decimaquart a queſtione. CAP. XIX.
[3.20.] De uer a r atione .17. queſtionis. CAP. XX.
[3.21.] De uera & intrinſeca cauſa trocble arum. CAP. XXI.
[3.22.] Depropria cauſa .24. quæſtionis. CAP. XXII.
[3.23.] De uer a cauſa .30. quæstionis. CAP. XXIIII.
[3.24.] Deratione .35. & ultimæ quæstionis. CAP. XXV.
[4.] DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.
[4.1.] Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.
[4.2.] Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.
[4.3.] Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.
[4.4.] Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.
[4.5.] Exempla dictorum. CAP.V.
[4.6.] Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.
[4.7.] Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.
[4.8.] Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.
[4.9.] Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.
[4.10.] Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.
[4.11.] Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.
[4.12.] Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.
[4.13.] Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.
[4.14.] Quid ſequatur ex ſupradistis. CAP. XIIII.
[4.15.] Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.
[4.16.] Fdipſum aliter demonſtr atur. CAP. XVI.
[4.17.] De alio Aristo. lapſu. CAP. XVII.
< >
page |< < (93) of 445 > >|
10593THEOREM. ARIT. tum eſt, ideo cognoſcemus .e.u. ſed cum .e.u. minor ſit .a.u. ex .18. & penultima primi,
ſi demptum fuerit quadratum .e.u. ex quadrato .a.u. remanebit nobis cognitum quadra-
tum
.a.e. & ſic nota erit nobis perpendicularis .a.e. ex penultima primi, quæ quidem .
a.e.
ſi multiplicata fuerit in dimidium .o.u. dabit nobis ſuperficiem trianguli .a.o.u. ex
41. dicti libri.
Et quia proportio trianguli .a.o.u. ad triangulum .u.i.n. (propter ſimi
litudinem) eſt vt quadrati .o.u. ad quadratum .n.i. ex communi ſcientia cum vna-
quæque iſtarum proportionum dupla ſit proportioni .o.u. ad .n.i. ex .17. et .18. ſexti,
deinde cum nobis cognitæ ſint tres iſtarum quatuor quantitatum hoc eſt ſuperficies
trianguli .a.o.u. ſuperficies trianguli .u.n.i. & quadrati .o.u.
quare ex regula de tribus
cognoſcemus etiam quadratum .n.i. & ſic .n.i. latus primi trianguli, vnde reliqua la
tera illicò nobis innoteſcent exipſa regula de tribus, cum dixerimus, ſi .o.u. dat nobis
u.a.
tunc .i.n. dabit .u.n. quòd etiam infero de .u.i.
Poſſemus etiam ita hoc perficere,
ſcilicet inuenire .x. quantitatem me-
144[Figure 144] diam proportionalem inter duas ſu-
perficies triangulorum, vnde ſuper-
ficies trianguli .i.a.u.o. ad .x. ſe ha-
beret ut .o.u. ad .i.n. & ita ex regula
detribus cognoſcemus .i.n.
Multo tem
pore poſtquàm hoc theorema conſtruxi, ipſum conſcriptum inueni in decimo
ſecundi libri Ioannis de monte Regio, ſatis tamen obſcurè expreſſum.
THEOREMA CXXXIX.
IN eodem primo libro vltimæ partis numerorum, Tartalea probat, via algebrę
quòd quælibet duo latera trianguli orthogonij, angulumrectum continentia,
ſint tertio longiora per diame-
145[Figure 145] trum circuli inſcriptibilis in ip-
ſo triangulo.
ſed hoc breuius
geometricè poteſt demonſtrari,
quemadmodum in ſubſcripta
hic figura videre eſt, proptereà
quòd cum anguli .A.o.u. et .n.
omnes ſint recti et .A.u. æqualis
o.n. et .A.n. ęqualis .u.o. ipſæ .A.
u.
et .A.n. æquales erunt diame-
tro ipſius circuli.
Sed eædem .
A.u.
et .A.n. ſunt ſuperfluum, quo .A.B. et .A.C. ſunt maiores .B.C. cum .B.u. et .C.n.
ſint æquales .B.C. ex penultima tertij Eucli.
THEO. SEQVENS THEO. CXXXIX.
SImiliter in nono capite ſecundi libri nouæ ſcientiæ poterat ipſe Tartalea breuio
ri methodo abſque vlla operatione ipſius Algebræ inuenire .A.H. reſpectu .A.
E.
eſſe vt .4. cum vno ſeptimo ad vnum.
Nam ipſe ſupponit .A.E. decimam partem eſſe ipſius

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index