Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(151)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div354
"
type
="
section
"
level
="
3
"
n
="
8
">
<
p
>
<
s
xml:id
="
echoid-s1797
"
xml:space
="
preserve
">
<
pb
o
="
151
"
rhead
="
DE MECHAN.
"
n
="
163
"
file
="
0163
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0163
"/>
et
<
var
>.E.M.</
var
>
lineis productis vſque ad centrum regionis elementaris, vnde dictus angu-
<
lb
/>
lus
<
var
>.M.E.G.</
var
>
maior eſt alio, ex .16 lib. primi Eucli. </
s
>
<
s
xml:id
="
echoid-s1798
"
xml:space
="
preserve
">Qua ratione fit, vt hanc ob cauſam
<
lb
/>
E. grauius ſit ipſo
<
var
>.D.</
var
>
cum minus dependeat à centro
<
var
>.A.</
var
>
vt primo cap. huius tractatus
<
lb
/>
iam dixi. </
s
>
<
s
xml:id
="
echoid-s1799
"
xml:space
="
preserve
">Alia quoque eſtratio, qua dictum
<
var
>.E.</
var
>
grauius fit ipſo
<
var
>.D.</
var
>
quę quidem eſt
<
lb
/>
maior diſtantia à centro
<
var
>.A.</
var
>
libræ, per ſimiles rationes capit .4. huius tractatus ci-
<
lb
/>
tatas.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1800
"
xml:space
="
preserve
">Decimaquinta
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
nil penitus valet, quę eſt .11. quęſtio Iordani, cuius Autho-
<
lb
/>
ris opuſculum opera Traiani Bibliopolę Venetijs è tenebris in lucem emerſit.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div356
"
type
="
section
"
level
="
3
"
n
="
9
">
<
head
xml:id
="
echoid-head210
"
style
="
it
"
xml:space
="
preserve
">Quòdſummaratione ſtateræper æqualia interualla
<
lb
/>
ſint diuiſæ.</
head
>
<
head
xml:id
="
echoid-head211
"
xml:space
="
preserve
">CAP. IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1801
"
xml:space
="
preserve
">MAgna cum ratione
<
reg
norm
="
diuiduntur
"
type
="
context
">diuidũtur</
reg
>
ſtateræ per interualla ęqualia, in libras, aut in
<
lb
/>
vncias, aut quoquo alio modo. </
s
>
<
s
xml:id
="
echoid-s1802
"
xml:space
="
preserve
">Nam ſit ſtatera exempli gratia
<
var
>.a.b.</
var
>
<
lb
/>
& punctum,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
eam ſuſtinet ſit
<
var
>.c.</
var
>
& vas illud,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
continetid, quod ponderari debet
<
lb
/>
f. </
s
>
<
s
xml:id
="
echoid-s1803
"
xml:space
="
preserve
">Imaginemur nunc quod pondus brachij
<
var
>.c.b.</
var
>
ab una parte, & pondus brachij
<
var
>.c.a.</
var
>
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
<
lb
/>
eo,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
eſt dicti vaſis
<
var
>.f.</
var
>
ab altera parte, ſint cauſę, quibus ſtatera
<
var
>.a.b.c.</
var
>
ſtet orizonta-
<
lb
/>
lis. cui ſic orizontali manenti imaginemur ad punctum
<
var
>.a.</
var
>
adiunctum eſſe pondus,
<
lb
/>
veluti vnius librę. & ad punctum
<
var
>.d.</
var
>
tam diſtanti à
<
var
>.c.</
var
>
ut eſt
<
var
>.a.</
var
>
ab ipſo
<
var
>.c.</
var
>
aliud quoque
<
lb
/>
pondus vnius libræ
<
reg
norm
="
additum
"
type
="
context
">additũ</
reg
>
eſſe, vnde
<
reg
norm
="
coni
"
type
="
context
">cõi</
reg
>
<
reg
norm
="
quadam
"
type
="
context
">quadã</
reg
>
ſcientia ſtatera, non mouebitur ſitu.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1804
"
xml:space
="
preserve
">
<
reg
norm
="
quia
"
type
="
simple
">ꝗa</
reg
>
exiſtentibus duobus hiſce ponderibus æqualibus, altero in
<
var
>.d.</
var
>
& altero in
<
var
>.a.</
var
>
remo
<
lb
/>
ta cum eſſent
<
var
>.d.b.</
var
>
et
<
var
>.f.</
var
>
abſque dubio
<
var
>.a.d.</
var
>
non mutaret ſitum, ſed
<
var
>.d.b.</
var
>
et, f. in ſitu, in
<
lb
/>
quo reperiuntur, à centro paribus viribus prędita ſunt. </
s
>
<
s
xml:id
="
echoid-s1805
"
xml:space
="
preserve
">Addendo igitur
<
var
>.d.b.</
var
>
ipſi
<
var
>.d.</
var
>
<
lb
/>
et
<
var
>.f.</
var
>
ipſi .a: ſumma earum, æqualibus quoque viribus conſtabunt. ex communi ſen-
<
lb
/>
tentia, quæ habet ſi ęqualibus addas ęqualia, tota quoque fient ęqualia. </
s
>
<
s
xml:id
="
echoid-s1806
"
xml:space
="
preserve
">Si verò
<
lb
/>
ponderi ipſius
<
var
>.a.</
var
>
aliud adderetur eidem ęquale, haberemus in
<
var
>.a.</
var
>
duplum pon-
<
lb
/>
dus ei
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
eſt ipſius
<
var
>.d.</
var
>
ſed volentes vt ſolum cum pondere ipſius
<
var
>.d.</
var
>
ſtatera ſtet orizon
<
lb
/>
talis, ſi dictum pondus ipſius
<
var
>.d.</
var
>
longè diſtabit à centro
<
var
>.c.</
var
>
per duplum ipſius
<
var
>.c.a.</
var
>
ideſt
<
lb
/>
ipſius
<
var
>.c.d.</
var
>
id
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
volumus aſſeque-
<
lb
/>
mur, beneficio ſupradictarum ra
<
lb
/>
<
figure
xlink:label
="
fig-0163-01
"
xlink:href
="
fig-0163-01a
"
number
="
221
">
<
image
file
="
0163-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0163-01
"/>
</
figure
>
tionum, adiuti opera ſextę lib. pri
<
lb
/>
mi de
<
reg
norm
="
ponderibus
"
type
="
context
">põderibus</
reg
>
Archimedis. </
s
>
<
s
xml:id
="
echoid-s1807
"
xml:space
="
preserve
">Et
<
lb
/>
ſi quis aliud
<
reg
norm
="
quoque
"
type
="
simple
">quoq;</
reg
>
pondus adiun
<
lb
/>
geret ipſi
<
var
>.a.</
var
>
æquale illi priori, ad
<
lb
/>
<
reg
norm
="
efficiendum
"
type
="
context
">efficiẽdum</
reg
>
, vt ſtatera ſemper ori
<
lb
/>
zontalis maneret, oporteret, vt
<
reg
norm
="
pondus
"
type
="
context
">põdus</
reg
>
ipſius
<
var
>.d.</
var
>
ab
<
var
>.c.</
var
>
longè diſtaret, ita vt huiuſmodi
<
lb
/>
diſtantia tripla eſſet primæ, & ſic per quoſdam quaſi gradus interualla redderentur
<
lb
/>
æqualia.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>