Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(176)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div387
"
type
="
chapter
"
level
="
2
"
n
="
4
">
<
div
xml:id
="
echoid-div407
"
type
="
section
"
level
="
3
"
n
="
12
">
<
p
>
<
s
xml:id
="
echoid-s2088
"
xml:space
="
preserve
">
<
pb
o
="
176
"
rhead
="
IO. BAPT. BENED.
"
n
="
188
"
file
="
0188
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0188
"/>
ſed proportio
<
var
>.p.f.</
var
>
ad
<
var
>.q.i.</
var
>
maior eſſet ea, quæ eſt
<
var
>.c.f.</
var
>
ad
<
var
>.q.i.</
var
>
ex. octaua lib. quinti, vn-
<
lb
/>
de ex .12. eiuſdem lib. maior eſſet
<
var
>.p.f.</
var
>
ad
<
var
>.q.i.</
var
>
quàm.o.f. ad
<
var
>.n.i.</
var
>
ex .33. igitur eiuſdem,
<
lb
/>
maior erit proportio
<
var
>.p.o.</
var
>
ad
<
var
>.q.n.</
var
>
quàm.p.f. ad
<
var
>.q.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2089
"
xml:space
="
preserve
">Sic quoque ſe habebunt ad inui
<
lb
/>
cem velocitates, quod eſt propoſitum. </
s
>
<
s
xml:id
="
echoid-s2090
"
xml:space
="
preserve
">Cum autem proportio
<
var
>.p.o.</
var
>
ad
<
var
>.q.n.</
var
>
maior ſit,
<
lb
/>
quàm.p.f. ad
<
var
>.q.i.</
var
>
permurando igitur maior erit proportio
<
var
>.p.o.</
var
>
ad
<
var
>.p.f.</
var
>
quam
<
var
>.q.n.</
var
>
ad
<
var
>.
<
lb
/>
q.i.</
var
>
aut euerſim maior erit proportio
<
var
>.q.i.</
var
>
ad
<
var
>.q.n.</
var
>
quàm.p.f. ad
<
var
>.p.o.</
var
>
vnde ſi proportio
<
lb
/>
<
var
>p.f.</
var
>
ad
<
var
>.p.o.</
var
>
eſſet ac ea, quæ eſt
<
var
>.o.g.</
var
>
ad
<
var
>.f.g.</
var
>
non eſſet
<
var
>.q.i.</
var
>
ad
<
var
>.q.n.</
var
>
ut eſt
<
var
>.o.g.</
var
>
ad
<
var
>.f.g.</
var
>
aut
<
lb
/>
vt
<
var
>.n.k.</
var
>
ad
<
var
>.i.k.</
var
>
quodidem
<
lb
/>
eſt, de quibus quidem re-
<
lb
/>
<
figure
xlink:label
="
fig-0188-01
"
xlink:href
="
fig-0188-01a
"
number
="
254
">
<
image
file
="
0188-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0188-01
"/>
</
figure
>
bus, exemplis propoſitis
<
lb
/>
quinto capite
<
reg
norm
="
mentionem
"
type
="
context
">mẽtionem</
reg
>
<
lb
/>
feci.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2091
"
xml:space
="
preserve
">Velocitatibus autem ſe-
<
lb
/>
quentibus pondera, ſequi
<
lb
/>
tur proportionem veloci-
<
lb
/>
citatum duorum corporum hetereogeneorum eandem non eſſe per diuerſa media,
<
lb
/>
contra id, quod ſequeretur ſi Ariſtotelis opinionem .8. cap. lib. 4. phyſicorum re-
<
lb
/>
ciperemus.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div409
"
type
="
section
"
level
="
3
"
n
="
13
">
<
head
xml:id
="
echoid-head267
"
style
="
it
"
xml:space
="
preserve
">Longe aliter ueritatem ſe habere quam Aristoteles
<
lb
/>
doceat in fine libri ſeptimi phyſicorum.</
head
>
<
head
xml:id
="
echoid-head268
"
xml:space
="
preserve
">CAP. XIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2092
"
xml:space
="
preserve
">NOn tam facile eſt aſſignare proportionem velocitatum duorum corporum na
<
lb
/>
turalium, quam Ariſtoteles vltimo cap. lib. 7. phyſicorum putauit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2093
"
xml:space
="
preserve
">Quamobrem ſint duo corpora
<
var
>.B.</
var
>
et
<
var
>.D.</
var
>
materia
<
reg
norm
="
magnitudineque
"
type
="
simple
">magnitudineq́;</
reg
>
diuerſa, pondere
<
lb
/>
tamen, & figura ſimilia, & proportio reſiſtentiarum, quas recipiunt à medio
<
reg
norm
="
dum
"
type
="
context
">dũ</
reg
>
mo-
<
lb
/>
uentur, ſit. ut
<
var
>.o.i.</
var
>
ad
<
var
>.a.e.</
var
>
denotentur deinde velocitates totales abſque vlla reſiſten-
<
lb
/>
tia ab
<
var
>.a.u.</
var
>
et
<
var
>.o.c.</
var
>
quæ æquales erunt ad inuicem per communem ſcientiam ex ſup-
<
lb
/>
poſito, ſint alia deinde duo corpora
<
var
>.V.</
var
>
et
<
var
>.M.</
var
>
eodem modo ſe habentia ut prima
<
var
>.B.</
var
>
<
lb
/>
et
<
var
>.D.</
var
>
in eodem medio, ſed ex diuerſa materia ab ea, quæ eſt illorum duorum corpo
<
lb
/>
rum, magnitudine tamen & figura ijſdem ſimilia: </
s
>
<
s
xml:id
="
echoid-s2094
"
xml:space
="
preserve
">ſignificentur quoque eo-
<
lb
/>
rundem reſiſtentiæ per
<
var
>.t.s.</
var
>
et
<
var
>.n.r.</
var
>
& eorundem velocitates à nulla ex reſiſtentijs di-
<
lb
/>
minutæ, per
<
var
>.n.x.</
var
>
et
<
var
>.t.g.</
var
>
vnde
<
var
>.n.r.</
var
>
æqualis erit
<
var
>.a.e.</
var
>
et
<
var
>.t.s.</
var
>
ipſi
<
var
>.o.i.</
var
>
et
<
var
>.n.x.</
var
>
ipſi
<
var
>.t.g</
var
>
:
<
var
>n.x.</
var
>
ta-
<
lb
/>
men et
<
var
>.t.g.</
var
>
non erunt ęqualia
<
var
>.a.u.</
var
>
et
<
var
>.o.c</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2095
"
xml:space
="
preserve
">Sed exempli gratia, ponamus ea eſſe mi-
<
lb
/>
nora. </
s
>
<
s
xml:id
="
echoid-s2096
"
xml:space
="
preserve
">Supponamus nunc
<
var
>.e.u.</
var
>
velocitatem eſſe quæ remanet ipſi
<
var
>.B.</
var
>
cum applicata
<
lb
/>
erit reſiſtentia
<
var
>.a.e.</
var
>
dicto corpori
<
var
>.B.</
var
>
quæ diminutam facit totam
<
var
>.a.u.</
var
>
per
<
var
>.a.e.</
var
>
<
reg
norm
="
ſitque
"
type
="
simple
">ſitq́;</
reg
>
<
var
>.i.c.</
var
>
<
lb
/>
ea, quę remanet ipſi
<
var
>.o.c.</
var
>
corporis
<
var
>.D.</
var
>
et
<
var
>.r.x.</
var
>
ea, quæ remanet
<
var
>.n.x.</
var
>
corporis
<
var
>.V.</
var
>
et
<
var
>.s.g.</
var
>
<
lb
/>
ea, quæ eſt ex
<
var
>.t.g.</
var
>
corporis
<
var
>.M</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2097
"
xml:space
="
preserve
">Vnde communi omnium
<
reg
norm
="
conſenſu
"
type
="
context
">cõſenſu</
reg
>
aſſequemur
<
var
>.e.u.</
var
>
ma
<
lb
/>
iorem futuram
<
var
>.r.x.</
var
>
et
<
var
>.i.c.</
var
>
ipſa
<
var
>.s.g</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2098
"
xml:space
="
preserve
">Scindatur deinde
<
var
>.a.m.</
var
>
ad ęqualitatem
<
var
>.n.x.</
var
>
et
<
var
>.o.z.</
var
>
<
lb
/>
ipſius
<
var
>.t.g.</
var
>
vnde
<
var
>.a.m.</
var
>
ad
<
var
>.o.z.</
var
>
et
<
var
>.m.u.</
var
>
ad
<
var
>.z.c.</
var
>
æquales habebimus, ut quoque
<
var
>.e.m.</
var
>
ad
<
var
>.r.
<
lb
/>
x.</
var
>
et
<
var
>.i.z.</
var
>
ad
<
var
>.s.g.</
var
>
quamobrem
<
var
>.e.m.</
var
>
maior erit ipſa
<
var
>.z.i.</
var
>
maior igitur erit proportio
<
var
>.z.c.</
var
>
<
lb
/>
ad
<
var
>.z.i.</
var
>
quàm.m.u. ad
<
var
>.m.e.</
var
>
(quia
<
var
>.z.c.</
var
>
ad
<
var
>.z.i.</
var
>
ita ſe habet vt
<
var
>.m.u.</
var
>
ad
<
var
>.i.z.</
var
>
ex .7. lib. quin-
<
lb
/>
ti, ſed
<
var
>.m.u.</
var
>
ad
<
var
>.i.z.</
var
>
maior eſt quam ad
<
var
>.m.e.</
var
>
ex .8. dicti lib. vnde ex .12. eiuſdem
<
var
>.z.c.</
var
>
ad
<
lb
/>
ad
<
var
>.z.i.</
var
>
maior erit, quàm.m.u. ad
<
var
>.m.e</
var
>
. </
s
>
<
s
xml:id
="
echoid-s2099
"
xml:space
="
preserve
">Ergo ex .28. maior proportio erit
<
var
>.c.i.</
var
>
ad
<
var
>.z.i.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>