Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[5.1.7. SEPTIMVM. Euclidis uerò undecima propoſitio.]
[5.1.8. OCTAVVM. εuclidis uerò duodecima propoſitio.]
[5.1.9. NONVM. Euclidis uero tertiadecima propoſitio.]
[5.1.10. DECIMVM.]
[5.1.11. VNDECIMVM.]
[5.1.12. DVODECIMVM.]
[5.2. None]
[5.2.1. THEOR.I. II. ET III.]
[5.2.2. THEOREM. IIII.]
[5.2.3. THEOR.V. ET VI.]
[5.2.4. THEOR. VII. VIII. IX.X. XI. XII. XIII.]
[5.2.5. THEOREM. XIIII.]
[5.2.6. THEOR. XV.]
[5.2.7. THEOREM. XVI.]
[5.2.8. THEOR. XVII.]
[5.2.9. THEOREM. XVIII.]
[5.2.10. THEOREM. XIX.]
[5.2.11. THEOREM. XX.]
[5.2.12. THEOREM. XXI.]
[5.2.13. THEOREM. XXII. XXIII.]
[6. PHYSICA, ET MATHEMATICA RESPONSA. FO. BAPTISTAE BεNεDICTI PATRITII Veneti, Philoſophi Mathematici.]
[6.1. None]
[6.2. None]
[6.3. None]
[6.4. None]
[6.5. None]
[6.6. None]
[6.7. None]
[6.8. None]
[6.9. None]
< >
page |< < (203) of 445 > >|
IN QVINT. LIB. EVCLI.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div441" type="chapter" level="2" n="5">
            <div xml:id="echoid-div454" type="section" level="3" n="2">
              <div xml:id="echoid-div469" type="section" level="4" n="10">
                <p>
                  <s xml:id="echoid-s2474" xml:space="preserve">
                    <pb o="203" rhead="IN QVINT. LIB. EVCLI." n="215" file="0215" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0215"/>
                  portio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  probabo ita ſe habituram proportionem
                    <var>.b.</var>
                  ad
                    <var>.a.</var>
                  ſicut
                    <lb/>
                  ſe habet
                    <var>.d.</var>
                  ad
                    <var>.c.</var>
                  hoc argumento: </s>
                  <s xml:id="echoid-s2475" xml:space="preserve">ſi
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  ita ſe
                    <lb/>
                  habet ſicut
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ex .16. theoremate ita ſe ha
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0215-01a" xlink:href="fig-0215-01"/>
                  bebit
                    <var>.a.</var>
                  ad
                    <var>.c</var>
                  , ſicut
                    <var>.b.</var>
                  ad
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2476" xml:space="preserve">Quare ſic ſe habebit
                    <lb/>
                  b. ad
                    <var>.d.</var>
                  ſicut
                    <var>.a.</var>
                  ad
                    <var>.c</var>
                  . </s>
                  <s xml:id="echoid-s2477" xml:space="preserve">Itaque ex eodem .16. ita ſe
                    <lb/>
                  ſe habebit
                    <var>.b.</var>
                  ad
                    <var>.a.</var>
                  ſicut
                    <var>.d.</var>
                  ad
                    <var>.c</var>
                  .</s>
                </p>
                <div xml:id="echoid-div469" type="float" level="5" n="1">
                  <figure xlink:label="fig-0215-01" xlink:href="fig-0215-01a">
                    <image file="0215-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0215-01"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div471" type="section" level="4" n="11">
                <head xml:id="echoid-head351" xml:space="preserve">THEOREM. XX.</head>
                <p>
                  <s xml:id="echoid-s2478" xml:space="preserve">QVamuis .20. theorema apud Eucli. perfectè demonſtratum fuerit, poteſt ni-
                    <lb/>
                  hilominus & hac via demonſtrari. </s>
                  <s xml:id="echoid-s2479" xml:space="preserve">Sic ſe habeat proportio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  ſicut ſe
                    <lb/>
                  habet
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  & proportio
                    <var>.b.</var>
                  ad
                    <var>.e.</var>
                  ſicut
                    <var>.d.</var>
                  ad
                    <var>.
                      <lb/>
                    f</var>
                  . </s>
                  <s xml:id="echoid-s2480" xml:space="preserve">Dico
                    <reg norm="quod" type="simple">ꝙ</reg>
                  ſi
                    <var>.a.</var>
                  maius fuerit
                    <var>.e.</var>
                  pariter
                    <var>.c.</var>
                  maius
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0215-02a" xlink:href="fig-0215-02"/>
                  erit
                    <var>.f.</var>
                  & ſi
                    <var>.a.</var>
                  minus fuerit .e: c.
                    <reg norm="quoque" type="simple">quoq;</reg>
                  minus erit
                    <lb/>
                  f. ſin verò ęquale,
                    <reg norm="ent" type="context">ẽt</reg>
                  æquale erit. </s>
                  <s xml:id="echoid-s2481" xml:space="preserve">Nam ex pri
                    <lb/>
                  mo poſtulato certi ſumus ita ſe habere pro
                    <lb/>
                    <reg norm="portionem" type="context">portionẽ</reg>
                    <var>.a.</var>
                  ad
                    <var>.e.</var>
                  ſicut ſe habet proportio
                    <var>.c.</var>
                  ad
                    <lb/>
                  p. </s>
                  <s xml:id="echoid-s2482" xml:space="preserve">Quare ex .12. theor
                    <reg norm="propoſitum" type="simple context">ꝓpoſitũ</reg>
                    <reg norm="manifeſtum" type="context">manifeſtũ</reg>
                  erit.</s>
                </p>
                <div xml:id="echoid-div471" type="float" level="5" n="1">
                  <figure xlink:label="fig-0215-02" xlink:href="fig-0215-02a">
                    <image file="0215-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0215-02"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div473" type="section" level="4" n="12">
                <head xml:id="echoid-head352" xml:space="preserve">THEOREM. XXI.</head>
                <p>
                  <s xml:id="echoid-s2483" xml:space="preserve">VIgeſimum primum theorema, ſatis apud Eucli. probatum, nihilominus præ-
                    <lb/>
                  ſcripto nunc modo demonſtrari poterit.</s>
                </p>
              </div>
              <div xml:id="echoid-div474" type="section" level="4" n="13">
                <head xml:id="echoid-head353" xml:space="preserve">THEOREM. XXII. XXIII.</head>
                <p>
                  <s xml:id="echoid-s2484" xml:space="preserve">DVO hæc theoremata in primum poſtulatum collegimus.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s2485" xml:space="preserve">Sequentia verò cum exactè apud Eucli. demonſtrentur non eſt cur nos in
                    <lb/>
                  ijs immoremur.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>