Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[5.1.7.] SEPTIMVM. Euclidis uerò undecima propoſitio.
[5.1.8.] OCTAVVM. εuclidis uerò duodecima propoſitio.
[5.1.9.] NONVM. Euclidis uero tertiadecima propoſitio.
[5.1.10.] DECIMVM.
[5.1.11.] VNDECIMVM.
[5.1.12.] DVODECIMVM.
[Item 5.2.]
[5.2.1.] THEOR.I. II. ET III.
[5.2.2.] THEOREM. IIII.
[5.2.3.] THEOR.V. ET VI.
[5.2.4.] THEOR. VII. VIII. IX.X. XI. XII. XIII.
[5.2.5.] THEOREM. XIIII.
[5.2.6.] THEOR. XV.
[5.2.7.] THEOREM. XVI.
[5.2.8.] THEOR. XVII.
[5.2.9.] THEOREM. XVIII.
[5.2.10.] THEOREM. XIX.
[5.2.11.] THEOREM. XX.
[5.2.12.] THEOREM. XXI.
[5.2.13.] THEOREM. XXII. XXIII.
[6.] PHYSICA, ET MATHEMATICA RESPONSA. FO. BAPTISTAE BεNεDICTI PATRITII Veneti, Philoſophi Mathematici.
[Item 6.1.]
[Item 6.2.]
[Item 6.3.]
[Item 6.4.]
[Item 6.5.]
[Item 6.6.]
[Item 6.7.]
[Item 6.8.]
[Item 6.9.]
< >
page |< < (263) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div518" type="section" level="3" n="8">
              <div xml:id="echoid-div518" type="letter" level="4" n="1">
                <pb o="263" rhead="EPISTOL AE." n="275" file="0275" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0275"/>
                <p>
                  <s xml:id="echoid-s3295" xml:space="preserve">Sed ſi circuli propoſiti ſeiuncti fuerint, ſumatur
                    <var>.b.i.</var>
                  diameter maioris, qui fiat ſe-
                    <lb/>
                  midiameter vnius circuli circa centrum
                    <var>.o.</var>
                  & hic circulus vocetur
                    <var>.h.x.</var>
                  coniunga-
                    <lb/>
                  tur deinde ſemidiameter
                    <var>.o.i.</var>
                  minoris circuli cum ſemidiametro
                    <var>.a.i.</var>
                  circuli maio-
                    <lb/>
                  ris, & ex huiuſmodi compoſita linea, fiat vnus ſemidiameter
                    <var>.a.x.</var>
                  circuli
                    <var>.x.n.</var>
                  concen
                    <lb/>
                  trici cum maiori, & à puncto
                    <var>.x.</var>
                  interſectionis horum circulorum (poſito quod ſe in-
                    <lb/>
                  uicem interſecent) ducantur per eorum centra
                    <var>.x.a.</var>
                  et
                    <var>.x.o.</var>
                  vſque ad ipſorum circun-
                    <lb/>
                  ferentias in punctis
                    <var>.d.</var>
                  et
                    <var>.f.</var>
                  duę
                    <lb/>
                  lineæ, vnde habebimus
                    <var>.x.d.</var>
                    <lb/>
                  æqualem
                    <var>.x.f.</var>
                  eo quod tam in
                    <lb/>
                    <figure xlink:label="fig-0275-01" xlink:href="fig-0275-01a" number="304">
                      <image file="0275-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0275-01"/>
                    </figure>
                    <var>x.d.</var>
                  quam in
                    <var>.x.f.</var>
                  reperiuntur
                    <lb/>
                  diametri, & ſemidiametri am-
                    <lb/>
                  borum circulorum, facto deni
                    <lb/>
                  que centro
                    <var>.x.</var>
                  vnius circuli, cu
                    <lb/>
                  ius ſemidiameter ęqualis ſit
                    <lb/>
                  vni earum
                    <var>.x.d.</var>
                  vel
                    <var>.x.f.</var>
                  folu-
                    <lb/>
                  tum erit problema, dicta ra-
                    <lb/>
                  tione.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3296" xml:space="preserve">Si verò diſtantia duorum
                    <lb/>
                  propoſitorum circulorum tanta fuerit, quod ſecundi circuli nequeant ſe inuicem
                    <lb/>
                  tangere, vel ſecare, tunc alia via incedendum erit, quę talis eſt & generalis. </s>
                  <s xml:id="echoid-s3297" xml:space="preserve">Diuida-
                    <lb/>
                  tur tota
                    <var>.q.b.</var>
                  per æqualia in puncto
                    <var>.z.</var>
                  circa quod
                    <reg norm="ſignentur" type="context">ſignẽtur</reg>
                  duo puncta ab ipſo ęquidi
                    <lb/>
                  ſtantia
                    <var>.K.</var>
                  et
                    <var>.p.</var>
                  diſtantia vero
                    <var>.a.K.</var>
                  facta ſit ſemidiameter eſſe vnius circuli
                    <var>.K.x.</var>
                  circa
                    <lb/>
                  centrum
                    <var>.a.</var>
                  diſtantia autem
                    <var>.o.p.</var>
                  ſemidiameter alterius circuli
                    <var>.p.x.</var>
                  circa cen-
                    <lb/>
                  trum
                    <var>.o.</var>
                  qui quidem circuli ſe inuicem ſecent in puncto
                    <var>.x.</var>
                  à quo cum ductę fue-
                    <lb/>
                  rinc
                    <var>.x.a.d.</var>
                  et
                    <var>.x.o.f.</var>
                  per centra dictorum circulorum, ipſe erunt
                    <reg norm="inuicem" type="context">inuicẽ</reg>
                  ęquales, eo
                    <reg norm="quod" type="wordlist">qđ</reg>
                    <lb/>
                  cum
                    <var>.b.K.</var>
                  æqualis ſit
                    <var>.q.p.</var>
                  igitur
                    <var>.x.d.</var>
                  et
                    <var>.q.p.</var>
                  erunt inuicem ęquales, ſed
                    <var>.f.x.</var>
                  æqualis eſt
                    <lb/>
                    <var>q.p</var>
                  . </s>
                  <s xml:id="echoid-s3298" xml:space="preserve">quare
                    <var>.x.f.</var>
                  æqualis erit
                    <var>.x.d.</var>
                  tunc ſi
                    <var>.x.</var>
                  centrum fuerit vnius circuli, cuius ſemidia-
                    <lb/>
                  mer ſit vna dictarum, problema ſolutum erit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3299" xml:space="preserve">Talis etiam ſoiutio commo-
                    <lb/>
                  da erit ad inueniendum dictum
                    <lb/>
                    <figure xlink:label="fig-0275-02" xlink:href="fig-0275-02a" number="305">
                      <image file="0275-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0275-02"/>
                    </figure>
                  circulum cuiuſuis magnitudinis,
                    <lb/>
                  dato tamen
                    <reg norm="quod" type="simple">ꝙ</reg>
                  eius diameter, ma
                    <lb/>
                  ior ſit
                    <var>.b.z.</var>
                  cum in noſtra poteſta
                    <lb/>
                  te ſit accipere puncta
                    <var>.K.</var>
                  et
                    <var>.p.</var>
                  pro
                    <lb/>
                  xima vel remota ab ipſo
                    <var>.z.</var>
                  ad li-
                    <lb/>
                  bitum. </s>
                  <s xml:id="echoid-s3300" xml:space="preserve">Vnde abſque vlla diuiſio
                    <lb/>
                  neipſius
                    <var>.q.b.</var>
                  per medium, ſatis
                    <lb/>
                  erit ſignare puncta
                    <var>.K.</var>
                  et
                    <var>.p.</var>
                  dua-
                    <lb/>
                  bus diſtantijs mediantibus
                    <var>.b.K.</var>
                    <lb/>
                  et
                    <var>.q.p.</var>
                  inuicem æqualibus, &
                    <lb/>
                  etiam propoſitis.</s>
                </p>
                <handwritten number="19"/>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>