Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.23. De uer a cauſa .30. quæstionis. CAP. XXIIII.]
[3.24. Deratione .35. & ultimæ quæstionis. CAP. XXV.]
[4. DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.]
[4.1. Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.]
[4.2. Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.]
[4.3. Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.]
[4.4. Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.]
[4.5. Exempla dictorum. CAP.V.]
[4.6. Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.]
[4.7. Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.]
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
[4.18. Quomodo dignoſcatur proportio uelocitatis duorum ſimilium corporum omogeniorum inaqualium. CAP. XVIII.]
[4.19. Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod uacuum non detur. CAP. XIX.]
[4.20. Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße. CAP. XX.]
[4.21. Vtrum bene Aristoteles ſenſerit de infinito. CAP. XXI.]
[4.22. Exagitatur ab Ariſtotele adductatemporis definitio. CAP. XXII.]
[4.23. Motum rectum eſſe continuum, uel dißentiente Ariſtotele. CAP. XXIII.]
[4.24. Idem uir grauisſimus an bene ſenſerit de motibus corporum uiolentis & natur alibus. CAP. XXIIII.]
[4.25. Motum rectum & natur alem non eſſe primo & per ſe quicquid Ariſtoteli uiſum ſit. CAP. XXV.]
[4.26. Omne corpus eſſe in loco proprio graue, ut Aristoteli placuit, non eft admittendum. CAP. XXVI.]
[4.27. Haud admittendam opinionem Principis Peripateticorum de circulo, & ſpbæra. CAP. XXVII.]
< >
page |< < (20) of 445 > >|
I O. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div67" type="math:theorem" level="3" n="30">
              <p>
                <s xml:id="echoid-s285" xml:space="preserve">
                  <pb o="20" rhead="I O. BAPT. BENED." n="32" file="0032" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0032"/>
                biturum, ſicut
                  <var>.u.x.</var>
                ad
                  <var>.n.x.</var>
                ex prima ſexti aut .18. vel .19. ſeptimi, </s>
                <s xml:id="echoid-s286" xml:space="preserve">quare ex 11.
                  <lb/>
                quinti ita ſe habebit
                  <var>.o.x.</var>
                ad
                  <var>.e.x.</var>
                ſicut
                  <var>.s.x.</var>
                ad vnitatem; </s>
                <s xml:id="echoid-s287" xml:space="preserve">ſed ſicut ſe habet
                  <var>.s.x.</var>
                ad.
                  <lb/>
                vnitatem, ita ſe habet pariter
                  <var>.o.x.</var>
                ad
                  <var>.m</var>
                . </s>
                <s xml:id="echoid-s288" xml:space="preserve">vnde ex .11. prædicta ita ſe habebit
                  <var>.o.
                    <lb/>
                  x.</var>
                ad
                  <var>.m.</var>
                ſicut idipſum
                  <var>.o.x.</var>
                ad
                  <var>.e.x.</var>
                itaq́ue ex .9. prædicti quinti
                  <var>.m.</var>
                æqualis erit
                  <var>.o.x</var>
                .</s>
              </p>
              <div xml:id="echoid-div67" type="float" level="4" n="1">
                <figure xlink:label="fig-0031-02" xlink:href="fig-0031-02a">
                  <image file="0031-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0031-02"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div69" type="math:theorem" level="3" n="31">
              <head xml:id="echoid-head47" xml:space="preserve">THEOREMA
                <num value="31">XXXI</num>
              .</head>
              <p>
                <s xml:id="echoid-s289" xml:space="preserve">CVR propoſito aliquo numero in duas partes inæquales diuiſo, ſi rurſus per
                  <lb/>
                quamlibet ipſarum diuidatur, prouenientia tantumdem coniuncta quantum
                  <lb/>
                multiplicata efficiant.</s>
              </p>
              <p>
                <s xml:id="echoid-s290" xml:space="preserve">Exempli gratia, ſit denarius prop oſitus numerus, per binarium & octonarium
                  <lb/>
                diuiſus, prouenientia erunt quinque & vnum cum quarta parte, quæ coniuncta
                  <lb/>
                crunt .6. cum quarta parte lineari, quæ ſi mul multiplicata, pariter erunt .6. cum
                  <lb/>
                quarta parte ſuperficiali.</s>
              </p>
              <p>
                <s xml:id="echoid-s291" xml:space="preserve">Cuius ſpeculationis cauſa, totalis numerns, linea
                  <var>.q.p.</var>
                ſignificetur, eius duæ
                  <lb/>
                partes, per
                  <var>.k.</var>
                maiorem et
                  <var>.u.</var>
                minorem, ipſa vnitas per .t: proueniens ex diuiſio-
                  <lb/>
                ne
                  <var>.q.p.</var>
                per
                  <var>.k.</var>
                ſit
                  <var>.q.i.</var>
                proueniens autem ipſius
                  <var>.q.p.</var>
                per
                  <var>.u.</var>
                ſit
                  <var>.q.f.</var>
                </s>
                <s xml:id="echoid-s292" xml:space="preserve">quare ex defini-
                  <lb/>
                tione diuiſionis ita ſe habebit
                  <var>.q.p.</var>
                ad
                  <var>.q.i.</var>
                ſicut
                  <var>.k.</var>
                ad
                  <var>.t.</var>
                et
                  <var>.q.p.</var>
                ad
                  <var>.q.f.</var>
                ſicut
                  <var>.u.</var>
                ad
                  <var>.t.</var>
                  <lb/>
                hoc eſt
                  <var>.q.f.</var>
                ad
                  <var>.q.p.</var>
                ſicut
                  <var>.t.</var>
                ad
                  <var>.u.</var>
                vnde ex æqualitate
                  <reg norm="proportionum" type="context">proportionũ</reg>
                ſic ſe habebit
                  <var>.q.f.</var>
                  <lb/>
                ad
                  <var>.q.i.</var>
                ſicut
                  <var>.k.</var>
                ad
                  <var>.u.</var>
                et conuerſim. </s>
                <s xml:id="echoid-s293" xml:space="preserve">Ad hæc in linea
                  <var>.q.p.</var>
                vnitas, per lineam
                  <var>.q.o.</var>
                ſigni-
                  <lb/>
                ficetur, quo facto, dicamus, ſi
                  <var>.q.p.</var>
                ad
                  <var>.q.i.</var>
                ſic ſe habet vt
                  <var>.k.</var>
                ad
                  <var>.q.o.</var>
                itaque permu-
                  <lb/>
                tando, ſic ſe habebit
                  <var>.q.p.</var>
                ad
                  <var>.k.</var>
                ſicut
                  <var>.q.i.</var>
                ad
                  <var>.q.o.</var>
                hoc eſt
                  <var>.k.u.</var>
                ad
                  <var>.k.</var>
                ſicut
                  <var>.i.q.f.</var>
                ad
                  <var>.
                    <lb/>
                  q.f.</var>
                (nam
                  <var>.k.u.</var>
                partes ſunt integrales totius
                  <var>.q.p.</var>
                et
                  <var>.k.u.</var>
                ad
                  <var>.k.</var>
                eſt ſicut
                  <var>.i.q.f.</var>
                ad
                  <var>.q.f.</var>
                  <lb/>
                ex .18. quinti) </s>
                <s xml:id="echoid-s294" xml:space="preserve">Quare ita erit
                  <var>.i.q.f.</var>
                ad
                  <var>.q.f.</var>
                ſicut
                  <var>.q.i.</var>
                ad vnitatem
                  <var>.q.o.</var>
                ex .11. quinti
                  <lb/>
                Addatur deinde
                  <var>.q.i.</var>
                ad
                  <var>.q.f.</var>
                et
                  <var>.q.i.</var>
                per
                  <var>.
                    <lb/>
                  q.f.</var>
                multiplicetur, cuius multiplicatio-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0032-01a" xlink:href="fig-0032-01"/>
                nis productum, ſit
                  <var>.x.f.</var>
                quod probabo
                  <lb/>
                æquale eſſe ſummæ
                  <var>.f.q.</var>
                cum
                  <var>.q.i</var>
                . </s>
                <s xml:id="echoid-s295" xml:space="preserve">Sece-
                  <lb/>
                tur enim linea
                  <var>.q.x.</var>
                in puncto
                  <var>.s.</var>
                ita. vt
                  <var>.
                    <lb/>
                  q.s.</var>
                æqualis ſit
                  <var>.q.o.</var>
                ſigneturq́ue pro-
                  <lb/>
                ductum
                  <var>.s.f.</var>
                </s>
                <s xml:id="echoid-s296" xml:space="preserve">quare
                  <reg norm="eadem" type="context">eadẽ</reg>
                erit propor-
                  <lb/>
                tio quantitatis
                  <var>.x.f.</var>
                ad
                  <var>.s.f.</var>
                quæ eſt
                  <var>.q.x.</var>
                  <lb/>
                ad
                  <var>.q.s.</var>
                ex prima ſexti, aut .18. vel 19.
                  <lb/>
                ſeptimi, hoc eſt, ſicut
                  <var>.q.i.</var>
                ad
                  <var>.q.o.</var>
                et
                  <lb/>
                ex .11. quinti (vt dictum eſt) ſicut
                  <var>.i.q.
                    <lb/>
                  f.</var>
                ad
                  <var>.q.f.</var>
                ſed numerus
                  <var>.s.f.</var>
                fuperficia-
                  <lb/>
                lis tantus eſt, quantus linearis
                  <var>.q.f</var>
                .
                  <lb/>
                </s>
                <s xml:id="echoid-s297" xml:space="preserve">quare ex .9. quinti tantus erit (ſu-
                  <lb/>
                perficialiter) numerus
                  <var>.x.f.</var>
                quantus
                  <lb/>
                (lineariter).
                  <var>f.q.i.</var>
                quod erat pro-
                  <lb/>
                poſitum.</s>
              </p>
              <div xml:id="echoid-div69" type="float" level="4" n="1">
                <figure xlink:label="fig-0032-01" xlink:href="fig-0032-01a">
                  <image file="0032-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0032-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div71" type="math:theorem" level="3" n="32">
              <head xml:id="echoid-head48" xml:space="preserve">THEOREMA.
                <num value="32">XXXII</num>
              .</head>
              <p>
                <s xml:id="echoid-s298" xml:space="preserve">CVR numero aliquo in duas partes inæquales diuiſo, ſi rurſus diuidatur per
                  <lb/>
                ſingulas partes, ſumma duorum prouenientium per binarium, ſemper ma-
                  <lb/>
                ior ſit ſumma prouenientium ex diuiſione vnius partis per alteram.</s>
              </p>
              <p>
                <s xml:id="echoid-s299" xml:space="preserve">
                  <reg norm="Exempli" type="context">Exẽpli</reg>
                gratia, ſi proponeretur numerus .24. qui in duas partes inæquales diuide­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>