Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(314)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div606
"
type
="
section
"
level
="
3
"
n
="
23
">
<
div
xml:id
="
echoid-div610
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
pb
o
="
314
"
rhead
="
IO. BABPT. BENED.
"
n
="
326
"
file
="
0326
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0326
"/>
</
div
>
<
div
xml:id
="
echoid-div611
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head473
"
style
="
it
"
xml:space
="
preserve
">Modus inueniendi duo triangula
<
reg
norm
="
varijs
"
type
="
lig
">varijs</
reg
>
conditionibus
<
lb
/>
affecta.</
head
>
<
head
xml:id
="
echoid-head474
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3861
"
xml:space
="
preserve
">QVod etiam quæris ita ſe habet, duo ſcilicet triangula inuenire, æqualia dua-
<
lb
/>
bus ſuperficiebus rectilineis propoſitis, quę quidem triangula ſint eiuſdem
<
lb
/>
alritudinis, & quod
<
reg
norm
="
vnunquodque
"
type
="
context
">vnũquodque</
reg
>
habeat angulum æqualem angulo pro
<
unsure
/>
poſito, &
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
<
lb
/>
alius angulus vnius, cum alio alterius, æquetur duobus rectis.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3862
"
xml:space
="
preserve
">Sint exempli gratia duæ propoſitæ ſuperflcies
<
var
>.c.y.</
var
>
duo verò anguli dati ſint
<
var
>.r.s.</
var
>
<
lb
/>
cum voluerimus inuenire duo triangula (quæ ſint
<
var
>.a.i.u.</
var
>
et
<
var
>.n.t.x.</
var
>
) tali conditio-
<
lb
/>
ne prædita, quod angulus, a. æqualis ſit angulo
<
var
>.s.</
var
>
& angulus
<
var
>.t.</
var
>
angulo
<
var
>.r.</
var
>
& quod
<
lb
/>
angulus
<
var
>.x.</
var
>
ſimul cum angulo
<
var
>.u.</
var
>
<
reg
norm
="
æ- quentur
"
type
="
context
">æ-
<
lb
/>
quẽtur</
reg
>
duobus rectis, & quod
<
reg
norm
="
triam
"
type
="
context
">triã</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0326-01
"
xlink:href
="
fig-0326-01a
"
number
="
349
">
<
image
file
="
0326-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0326-01
"/>
</
figure
>
<
reg
norm
="
gulum
"
type
="
context
">gulũ</
reg
>
<
var
>.a.i.u.</
var
>
æquale ſit ſuperficiei
<
var
>.
<
lb
/>
c.</
var
>
reliquum verò ſuperficiei
<
var
>.y.</
var
>
<
lb
/>
Ex duabus ſuperficiebus
<
var
>.c.</
var
>
et
<
var
>.y.</
var
>
<
lb
/>
conſtituemus duo quadrata, per vl
<
lb
/>
timam ſecundi Eucli. accipiemus,
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3863
"
xml:space
="
preserve
">deinde duo latera tetragonica ip-
<
lb
/>
ſorum quadratorum, & inuenie-
<
lb
/>
mus tertiam lineam in continua
<
lb
/>
proportionalitate cum illis lateri-
<
lb
/>
bus ex .10. ſexti, ſeruabimus po-
<
lb
/>
ſtea extremas illarum, quæ ſint
<
var
>.z.</
var
>
<
lb
/>
et
<
var
>.l.</
var
>
quarum proportio,
<
reg
norm
="
eadem
"
type
="
context
">eadẽ</
reg
>
erit,
<
lb
/>
quæ inter duas propoſitas ſuperfi-
<
lb
/>
cies reperitur ex .18. ſexti, accipie
<
lb
/>
mus, deinde lineam aliquam cu-
<
lb
/>
inſuis longitudinis, quæ ſit
<
var
>.q.g.</
var
>
ſu-
<
lb
/>
pra quam conſtituemus in puncto
<
lb
/>
q. angulum
<
var
>.m.q.g.</
var
>
ęqualem angu-
<
lb
/>
lo
<
var
>.s.</
var
>
& angulum
<
var
>.m.q.K.</
var
>
æqualem
<
lb
/>
angulo
<
var
>.r.</
var
>
ex .23. primi, poſtea ve-
<
lb
/>
rò à quouis puncto ipſius lineæ
<
var
>.q.
<
lb
/>
m.</
var
>
puta
<
var
>.o.</
var
>
ducetur
<
var
>.o.f.</
var
>
vſque ad
<
var
>.q.
<
lb
/>
g.</
var
>
quorſum volueris, producendo
<
lb
/>
ipſam
<
reg
norm
="
vſque
"
type
="
simple
">vſq;</
reg
>
. ad
<
var
>.d.</
var
>
ita quod propor-
<
lb
/>
tio
<
var
>f.o.</
var
>
ad
<
var
>.o.d.</
var
>
ſit vt
<
var
>.z.</
var
>
ad
<
var
>.l.</
var
>
ex .10.
<
lb
/>
ſexti, ducendo poſtea à puncto
<
var
>.d.</
var
>
<
lb
/>
lineam
<
var
>.d.h.E.</
var
>
parallelam lineæ
<
var
>.q.
<
lb
/>
g.</
var
>
& quia ex .2. primi Vitellionis
<
var
>.
<
lb
/>
h.E.</
var
>
ſecatur ab
<
var
>.q.K.</
var
>
in puncto
<
var
>.b.</
var
>
<
lb
/>
protrahemus
<
var
>.b.o.p.</
var
>
vnde ex ſimi-
<
lb
/>
litudine triangulorum habebimus
<
lb
/>
proportionem
<
var
>.p.o.</
var
>
ad
<
var
>.o.b.</
var
>
vt
<
var
>.f.o.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>