Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(334)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div647
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s4044
"
xml:space
="
preserve
">
<
pb
o
="
334
"
rhead
="
IO. BABPT. BENED.
"
n
="
346
"
file
="
0346
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0346
"/>
circunferentijs, ipſas circunferentias inuicem contiguas eſſe oportebit in puncto
<
var
>.b.</
var
>
<
lb
/>
tantummodo.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4045
"
xml:space
="
preserve
">Eſto primum quod centrum
<
var
>.c.</
var
>
commune exiſtat, vt dictum eſt. </
s
>
<
s
xml:id
="
echoid-s4046
"
xml:space
="
preserve
">ſit etiam centrum
<
lb
/>
vnius circuli, cuius diameter ſit
<
reg
norm
="
idem
"
type
="
context
">idẽ</
reg
>
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
maiori axe
<
var
>.d.p.</
var
>
& in gyro oxygoniæ accipia-
<
lb
/>
tur punctum
<
var
>.f.</
var
>
proximum
<
var
>.b.</
var
>
quantum fieri poterit, </
s
>
<
s
xml:id
="
echoid-s4047
"
xml:space
="
preserve
">tunc protrahatur
<
var
>.f.a.e.</
var
>
parallela
<
lb
/>
ipſi
<
var
>.g.c.</
var
>
vſque ad gyrum maioris circuli in puncto
<
var
>.e.</
var
>
quæ cum
<
var
>.d.p.</
var
>
rectos efficiec
<
lb
/>
angulos. ex .29. primi Eucli. </
s
>
<
s
xml:id
="
echoid-s4048
"
xml:space
="
preserve
">
<
reg
norm
="
ſecabitque
"
type
="
simple
">ſecabitq́;</
reg
>
gyrum circuli
<
var
>.b.o.</
var
>
minoris in puncto
<
var
>.t.</
var
>
quod di
<
lb
/>
co eſſe intra oxygoniam,
<
reg
norm
="
ſeparatumque
"
type
="
simple
">ſeparatumq́;</
reg
>
ab
<
var
>.f</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4049
"
xml:space
="
preserve
">Quapropter duco
<
var
>.c.e.</
var
>
quæ ſecabit cir-
<
lb
/>
cunferentiam circuli minoris in
<
reg
norm
="
puncto
"
type
="
context
">pũcto</
reg
>
<
var
>.o.</
var
>
à quo puncto duco etiam
<
var
>.o.i.</
var
>
parallelam ad
<
lb
/>
<
var
>e.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4050
"
xml:space
="
preserve
">Deinde conſidero, quod ex ra-
<
lb
/>
tionibus ab Archimede adductis in
<
lb
/>
<
figure
xlink:label
="
fig-0346-01
"
xlink:href
="
fig-0346-01a
"
number
="
373
">
<
image
file
="
0346-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0346-01
"/>
</
figure
>
quinta propoſitione libri de conoi-
<
lb
/>
dalibus, & ſphæroidibus, eadem
<
lb
/>
proportio erit
<
reg
norm
="
ipſius
"
type
="
simple
">ipſiꝰ</
reg
>
<
var
>.g.c.</
var
>
ad
<
var
>.b.c.</
var
>
quę
<
lb
/>
ipſius
<
var
>.e.a.</
var
>
ad
<
var
>.f.a.</
var
>
vnde permutando
<
lb
/>
ita erit ipſius
<
var
>.g.c.</
var
>
ad
<
var
>.e.a.</
var
>
vel
<
var
>.b.c.</
var
>
ad
<
lb
/>
<
var
>f.a.</
var
>
hoc eſt ipſius
<
var
>.e.c.</
var
>
ad
<
var
>.e.a.</
var
>
vt
<
var
>.o.c.</
var
>
<
lb
/>
ad
<
var
>.f.a.</
var
>
ſed ex ſimilitudine triangu-
<
lb
/>
lorum, & ex .11. quinti, ita
<
reg
norm
="
etiam
"
type
="
context
">etiã</
reg
>
erit
<
lb
/>
ipſius
<
var
>.o.c.</
var
>
ad
<
var
>.o.i.</
var
>
vt
<
var
>.o.c.</
var
>
ad
<
var
>.f.a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4051
"
xml:space
="
preserve
">Vn-
<
lb
/>
de ſequitur
<
var
>.o.i.</
var
>
æqualem eſſe
<
var
>.f.a.</
var
>
<
lb
/>
ſed ex .14. tertij Eucli
<
var
>.t.a.</
var
>
minor eſt
<
var
>.
<
lb
/>
o.i</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4052
"
xml:space
="
preserve
">Quare minor etiam erit ipſa
<
var
>.f.
<
lb
/>
a</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4053
"
xml:space
="
preserve
">Vnde punctum
<
var
>.t.</
var
>
intra oxygo-
<
lb
/>
niam erit, & conſequenter ſepara-
<
lb
/>
tum .ab
<
var
>.f</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4054
"
xml:space
="
preserve
">Sed ſi centrum circuli minoris
<
lb
/>
fuerit inter
<
var
>.c.</
var
>
et
<
var
>.b.</
var
>
hoc eſt eccentri-
<
lb
/>
cum ipſius oxygoniæ, ipſe tanget concentricum in puncto
<
var
>.b.</
var
>
tantummodò, vt in .3.
<
lb
/>
Euclidis libro probatur. </
s
>
<
s
xml:id
="
echoid-s4055
"
xml:space
="
preserve
">Vnde tanto magis diſtans erit punctum
<
var
>.t.</
var
>
à puncto
<
var
>.f.</
var
>
quod
<
lb
/>
erit propoſitum.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div650
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head499
"
style
="
it
"
xml:space
="
preserve
">Alterius dubitationis ſolutio.</
head
>
<
head
xml:id
="
echoid-head500
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4056
"
xml:space
="
preserve
">VNde autem fiat, quod à ſpeculis planis, obiectorum imagines, ita diſtantes
<
lb
/>
vltra ſuperficiem ipſius ſpeculi videantur, vt obiecta citra ipſam ſuperficiem
<
lb
/>
reperiuntur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4057
"
xml:space
="
preserve
">Pro cuius rei ſcientia, tres cognitiones nos primum habere oportet, quarum pri-
<
lb
/>
ma eſt. </
s
>
<
s
xml:id
="
echoid-s4058
"
xml:space
="
preserve
">Vnde fiat, quod obiecti imago in catheto incidentiæ videatur. </
s
>
<
s
xml:id
="
echoid-s4059
"
xml:space
="
preserve
">
<
reg
norm
="
Secunda
"
type
="
context
">Secũda</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s4060
"
xml:space
="
preserve
">vn-
<
lb
/>
de efficiatur, quod angulus reflexionis, ſemper æqualis ſit angulo incidentiæ.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4061
"
xml:space
="
preserve
">Terria demum. </
s
>
<
s
xml:id
="
echoid-s4062
"
xml:space
="
preserve
">Vnde naſcatur quod radius incidentiæ ſimul cum radio reflexio-
<
lb
/>
nis ſit in quodam plano ſecante ſuperficiem ſpeculi ſemper ad rectos, quod qui-
<
lb
/>
dem planum vocatur ſuperficies reflexionis. </
s
>
<
s
xml:id
="
echoid-s4063
"
xml:space
="
preserve
">Huiuſmodi tres paſſiones, ab omnibus
<
lb
/>
ſpecularijs conſideratæ ſunt, ſed rationes ab illis traditæ, mihi non ſatisfaciunt.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>