Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(336)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div642
"
type
="
section
"
level
="
3
"
n
="
28
">
<
div
xml:id
="
echoid-div650
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
pb
o
="
336
"
rhead
="
IO. BAPT. BENED.
"
n
="
348
"
file
="
0348
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0348
"/>
<
p
>
<
s
xml:id
="
echoid-s4079
"
xml:space
="
preserve
">Animal igitur, ſecundum diſtantiam obiecti, oculum accommodat ad recipien-
<
lb
/>
dum quam exactiſſimè ſpeciem ipſius obiecti, & hoc voluendo ambos oculos, vnum
<
lb
/>
verſus alium, ita quod interſectio axium ſit in ſitu ſeu loco dicti obiecti, nam tunc vi
<
lb
/>
dent ambo vel aliquis eorum ſolus, in tali diſtantia exactè obiectum videbit.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4080
"
xml:space
="
preserve
">Vnde ſequitur obiectum viſibile, compræhenſibile non eſſe ab vno tantummodo
<
lb
/>
oculo in quolibet ſitu axis ipſius oculi, ſed in eo, vbi alius axis interſecatur à dicto.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4081
"
xml:space
="
preserve
">Quæ quidem interſectio poteſt fieri propinqua, vel remota à viſu, ad certos tamen
<
lb
/>
terminos vſque.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4082
"
xml:space
="
preserve
">De huiuſmodi axium viſualium interſectione ſcribit Alhazem in .2. et .15. propo
<
lb
/>
ſitione tertij lib. Vitellio verò in .32. et .45. eiuſdem.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4083
"
xml:space
="
preserve
">Quod igitur dico, verum eſt, ideſt, quod ſi vno tantummodo oculo aſpiciemus
<
lb
/>
obiectum aliquod, ipſum nunquam perfectè proſpicietur, niſi cum oculus ita ſitus
<
lb
/>
fuerit, vt eius axis cum axe alterius in loco obiecti ſe inuicem ſecent, quamuis alter
<
lb
/>
oculus nihil videat,
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
<
reg
norm
="
autem
"
type
="
wordlist
">aũt</
reg
>
duobus oculis in tali ſitu
<
reg
norm
="
conſtitutis
"
type
="
context
">cõſtitutis</
reg
>
<
reg
norm
="
obiectum
"
type
="
context
">obiectũ</
reg
>
videmus, vnum
<
lb
/>
tantummodo nobis cernere videbimur, & ſi extra talem punctum interſectionis ip-
<
lb
/>
ſum obiectum poſitum fuerit, tunc duo talia, obiecta nobis apparebunt, ſed huiuſ
<
lb
/>
modi rei cauſam alias tibi manifeſtabo.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4084
"
xml:space
="
preserve
">His igitur cognitis, ponamus aliquam
<
lb
/>
<
figure
xlink:label
="
fig-0348-01
"
xlink:href
="
fig-0348-01a
"
number
="
375
">
<
image
file
="
0348-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0348-01
"/>
</
figure
>
ſpeculi ſuperficiem eſſe
<
var
>.g.h.</
var
>
in figura
<
var
>.B.</
var
>
<
lb
/>
obiectum autem viſibile
<
var
>.b.</
var
>
oculos vero
<
var
>.a.</
var
>
<
lb
/>
et
<
var
>.u.</
var
>
punctum autem
<
var
>.n.</
var
>
in ſuperficie ſpecu
<
lb
/>
li, à quo imago ipſius
<
var
>.b.</
var
>
reflectit ad
<
var
>.a.</
var
>
&
<
lb
/>
punctum
<
var
>.t.</
var
>
à quo reflectitur ad
<
var
>.u.</
var
>
et
<
var
>.c.e.</
var
>
<
lb
/>
ſit
<
reg
norm
="
communis
"
type
="
context
">cõmunis</
reg
>
ſectio ſuperficiei reflexionis
<
lb
/>
radiorum
<
var
>.b.n.a.</
var
>
et
<
var
>.c.f.</
var
>
ſit communis ſectio
<
lb
/>
ſuperficiei reflexionis radiorum
<
var
>.b.t.u.</
var
>
qua
<
lb
/>
rum
<
reg
norm
="
vnaquæque
"
type
="
simple
">vnaquæq;</
reg
>
ſuperficies reflexionis, ere-
<
lb
/>
cta eſt ad ſuperficiem ſpeculi
<
var
>.g.h.</
var
>
vt ſupra
<
lb
/>
diximus. </
s
>
<
s
xml:id
="
echoid-s4085
"
xml:space
="
preserve
">Nunc ex .19. vndecimi Eucl. ſequitur communem ſectionem harum dua-
<
lb
/>
rum ſuperficierum. (b.c.d. ſcilicet) ad rectos etiam eſſe ſupra ſuperficiem ſpeculi
<
var
>.g.
<
lb
/>
h.</
var
>
cum qua
<
var
>.b.c.</
var
>
quælibet linearum
<
var
>.a.n.</
var
>
vel
<
var
>.u.t.</
var
>
reflexarum ( productę cum fuerint )
<
lb
/>
ſeinuicem interſecabunt eo quod duo anguli
<
var
>.d.c.n.</
var
>
et
<
var
>.d.n.c.</
var
>
ſimul collecti minores
<
lb
/>
ſunt duobus rectis, & ita
<
var
>.d.c.t.</
var
>
cum
<
var
>.d.t.c.</
var
>
cum anguli
<
var
>.a.n.e.</
var
>
et
<
var
>.u.t.f.</
var
>
reflexi, ipſis con-
<
lb
/>
trapoſiti, æquales ſint angulis
<
var
>.b.n.c.</
var
>
et
<
var
>.b.t.c.</
var
>
incidentiæ, quorum
<
reg
norm
="
vnuſquiſque
"
type
="
simple
">vnuſquiſq;</
reg
>
ex .32.
<
lb
/>
primi, minor eſt recto.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4086
"
xml:space
="
preserve
">Dico etiam quod in eodem puncto huiuſmodi catheti
<
var
>.b.c.d.</
var
>
in quo interſecabi-
<
lb
/>
tur à linea
<
var
>.a.n.</
var
>
in eodem ſecabitur à linea
<
var
>.u.t.</
var
>
& quod punctum dicti concurſus, tan-
<
lb
/>
tum depreſſum erit ſub ſuperficie ſpeculi
<
var
>.g.h.</
var
>
quantum
<
var
>.b.</
var
>
ſupra ipſam reperietur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4087
"
xml:space
="
preserve
">Nam anguli
<
var
>.b.n.c.</
var
>
et
<
var
>.d.n.c.</
var
>
ſunt inuicem æquales,
<
reg
norm
="
angulique
"
type
="
simple
">anguliq́;</
reg
>
<
var
>.b.c.n.</
var
>
et
<
var
>.d.c.n.</
var
>
recti
<
var
>.c.n.</
var
>
<
lb
/>
verò communis ambobus triangulis
<
var
>.b.c.n.</
var
>
et
<
var
>.d.c.n.</
var
>
vnde ex .26. primi Eucli. latus
<
var
>.d.
<
lb
/>
c.</
var
>
commune, vt trianguli
<
var
>.d.c.n.</
var
>
æquale erit lateri communi
<
var
>.b.c.</
var
>
vt trianguli
<
var
>.b.c.n.</
var
>
<
lb
/>
Idem etiam dico de latere
<
var
>.d.c.</
var
>
vt ipſius trianguli
<
var
>.d.c.t.</
var
>
quod æquatur lateri
<
var
>.b.c.</
var
>
vt
<
lb
/>
trianguli
<
var
>.b.c.t</
var
>
. </
s
>
<
s
xml:id
="
echoid-s4088
"
xml:space
="
preserve
">Vnde cum
<
var
>.b.c.</
var
>
vnum, & idem ſit: </
s
>
<
s
xml:id
="
echoid-s4089
"
xml:space
="
preserve
">d.c. igitur etiam erit, & ipſum
<
reg
norm
="
vnum
"
type
="
context
">vnũ</
reg
>
<
lb
/>
& idem, quod erit propoſitum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4090
"
xml:space
="
preserve
">Nunc autem cum hi duo radij ſeinuicem ſecent in puncto
<
var
>.d.</
var
>
ergo in ipſo puncto
<
var
>.
<
lb
/>
d.</
var
>
videbimur nobis videre
<
reg
norm
="
imaginem
"
type
="
context
">imaginẽ</
reg
>
obiecti .b:
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
ope
<
reg
norm
="
duorum
"
type
="
context
">duorũ</
reg
>
<
reg
norm
="
iſtorum
"
type
="
context
">iſtorũ</
reg
>
<
reg
norm
="
radiorum
"
type
="
context
">radiorũ</
reg
>
<
var
>.n.a.</
var
>
et
<
var
>.t.
<
lb
/>
u.</
var
>
ita inuicem
<
reg
norm
="
ſitorum
"
type
="
context
">ſitorũ</
reg
>
, videamur nobis
<
reg
norm
="
imaginem
"
type
="
context
">imaginẽ</
reg
>
proſpicere. </
s
>
<
s
xml:id
="
echoid-s4091
"
xml:space
="
preserve
">Vnde ſi in tali caſu, vnus </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>