Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 163
[out of range]
>
page
|<
<
(422)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div776
"
type
="
section
"
level
="
3
"
n
="
50
">
<
div
xml:id
="
echoid-div778
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
pb
o
="
422
"
rhead
="
IO. BAPT. BENED.
"
n
="
434
"
file
="
0434
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0434
"/>
<
p
>
<
s
xml:id
="
echoid-s5113
"
xml:space
="
preserve
">Diameter verò ſphæræ ſeſquialter eſt longitudine axi Tetraedri, conſonantiæ
<
lb
/>
diapentis. </
s
>
<
s
xml:id
="
echoid-s5114
"
xml:space
="
preserve
">Axis autem Tetraedri ſeſquitertius eſt longitudinis ſemidiametro ſphæ-
<
lb
/>
ræ conſonantiæ diateſſaron. </
s
>
<
s
xml:id
="
echoid-s5115
"
xml:space
="
preserve
">Ita quod iſti tres termini, qui ſunt, diameter ſphæræ,
<
lb
/>
axis Tetraedri, & ſemidiameter ſphæræ conſtituunt etiam valde perfectam harmo-
<
lb
/>
niam huiuſmodi numeris contentam .6. 4. 3. corpulentia verò Exaedri ad corpu-
<
lb
/>
lentiam Tetraedri tripla eſt, conſonantiæ iam ſupradictæ diapaſondiapente. </
s
>
<
s
xml:id
="
echoid-s5116
"
xml:space
="
preserve
">Si ve-
<
lb
/>
rò de vniſono aliquid videre deſideras, conſidera æqualitatem dupli quadrati dia-
<
lb
/>
metri ipſius ſphæræ, cum omnibus baſibus Exaedri, vel potentia diametri ſphæræ
<
lb
/>
cum duabus potentijs ſimul ſumptis, quarum vna eſt lateris Tetraedri, reliqua verò
<
lb
/>
lateris Exaedri, vel æqualitatem numerorum laterum Tetraedri, cum baſibus Exae
<
lb
/>
dri. </
s
>
<
s
xml:id
="
echoid-s5117
"
xml:space
="
preserve
">Nec mihi videtur ſilentio inuoluendum eſſe, antequam vlterius progrediar no
<
lb
/>
tabilem ſympatiam inter triangulum æquilaterum, & Tetraedron (
<
reg
norm
="
quanuis
"
type
="
context
">quãuis</
reg
>
<
reg
norm
="
triangulum
"
type
="
context
">triangulũ</
reg
>
<
lb
/>
corpus non ſit) non ſolum ob
<
reg
norm
="
inalterabilitatem
"
type
="
context
">inalterabilitatẽ</
reg
>
harum duarum figurarum. </
s
>
<
s
xml:id
="
echoid-s5118
"
xml:space
="
preserve
">(nam omnes
<
lb
/>
aliæ alterabiles eſſe poſſunt, ijſdem lateribns exiſtentibus, cum ex quadrato rom-
<
lb
/>
bus, vel ex pentagono ęquiangulo, pentagonum non æquiangulum & c. efficiatur)
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5119
"
xml:space
="
preserve
">ſed quod quemadmodum latus trianguli æquilateri ſeſquitertium potentia eſt per-
<
lb
/>
pendiculari ipſum per æqualia diuidenti, ita latus Tetraedri, ſeſquialterum eſt po-
<
lb
/>
tentia axi ipſius Tetraedri, vnde cum dempta fuerit illa proportio ſeſquitertia, ex
<
lb
/>
hac ſeſquialtera relinquetur nobis proportio ſeſquioctaua, inter perpendicularem
<
lb
/>
trianguli, & axem Tetraedri (quod etiam ſupra demonſtrauimus.) </
s
>
<
s
xml:id
="
echoid-s5120
"
xml:space
="
preserve
">Tranſeamus nunc
<
lb
/>
hęc, nec omittamus tamen ſympatias quaſdam inter Exaedron, Octaedron, & Tetra
<
lb
/>
edron, hoc eſt quod eadem proportio ſit inter corpulentias Exaedri, & Octaedri,
<
lb
/>
quæinter eorum ſuperficies, nec non, vt latus Exaedri ad ſemidiametrum ſphæræ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5121
"
xml:space
="
preserve
">Proportio verò baſis Exaedri ad baſim Tetraedri, vtlatus Tetraedri ad perpendicu
<
lb
/>
larem diuidentem per æqualia eius baſim.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5122
"
xml:space
="
preserve
">Hactenus ſatis dictum ſit de Tetraedro, Exaedro, & Octaedro cum ſphæra. </
s
>
<
s
xml:id
="
echoid-s5123
"
xml:space
="
preserve
">
<
reg
norm
="
Dicem
"
type
="
context
">Dicẽ</
reg
>
<
lb
/>
dum nunc cenſeo aliquid de reliquis duobus mirabilibus corporibus, quamuis ferè
<
lb
/>
omnia hæc ab antiquis philoſophis inuenta ſint, quorum primum eſt, quod tam ba-
<
lb
/>
ſis Duodecaedri, quam Icoſaedri, ab vno
<
reg
norm
="
eodemque
"
type
="
simple
">eodemq́;</
reg
>
circulo circunſcriptibiles ſunt, ve
<
lb
/>
rùm, talis paſſio accidit etiam baſibus Exaedri & Octaedri. </
s
>
<
s
xml:id
="
echoid-s5124
"
xml:space
="
preserve
">Præterea quemadmo-
<
lb
/>
dum in Duodecaedro, quilibet angulus ſolidus terminatur tribus angulis pentago-
<
lb
/>
norum æquiangulorum ita in Icoſaedro, quilibet angulus ſolidus viceuerſa termi-
<
lb
/>
natur quinque angulis triangulorum æquiangulorum. </
s
>
<
s
xml:id
="
echoid-s5125
"
xml:space
="
preserve
">Et tam vnum, quam alte-
<
lb
/>
rum horum corporum, triginta lateribus continetur. </
s
>
<
s
xml:id
="
echoid-s5126
"
xml:space
="
preserve
">Et tot ſolidos angulos trian-
<
lb
/>
gulares, habet Duodecaedron, quot baſes triangulares continet Icoſaedron.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5127
"
xml:space
="
preserve
">Et Icoſaedron, tot ſolidos angulos
<
reg
norm
="
pentagonos
"
type
="
context
">pẽtagonos</
reg
>
, quot baſes
<
reg
norm
="
pentagonas
"
type
="
context
">pẽtagonas</
reg
>
habet Duo
<
lb
/>
decaedron. </
s
>
<
s
xml:id
="
echoid-s5128
"
xml:space
="
preserve
">Et tam vnum quam alterum habet .60. angulos ſuperficiales. </
s
>
<
s
xml:id
="
echoid-s5129
"
xml:space
="
preserve
">
<
reg
norm
="
Eademque
"
type
="
context simple
">Eadẽq́;</
reg
>
<
lb
/>
proportio eſt omnium baſium ſimul
<
reg
norm
="
ſumptarum
"
type
="
context
">ſumptarũ</
reg
>
Duodecaedri ad omnes baſes ſimul
<
lb
/>
ſumptas ipſius Icoſaedri, quæ corpulentiæ ipſius Duodecaedri ad corpulentiam
<
lb
/>
Icoſaedri (quamuis hęc paſſio accidat Exaedro cum Octaedro, vt ſpra diximus) quę
<
lb
/>
quidem proportio, eadem etiam eſt, quę lateris Exaedri ad latus Icoſaedri, vt ſu-
<
lb
/>
pra iam dictum fuit.</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>