Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.13. Quòd Ariſtotelisratio in 6. quæſtione poſit a non ſit admittenda. CAP. XIII.]
[3.14. Quòdrationes ab Ariſtotele de octaua quæstione confictæ ſufficient es non ſint. CAP. XIIII.]
[3.15. Quod Aristotelis ratio none queſtionis admittendanon ſit. CAP. XV.]
[3.16. Quod Aristotelis rationes de decima queſtione ſint reijciende. CAP. XVI.]
[3.17. De uer a cauſa .12. questionis mechanice. CAP. XVII.]
[3.18. De decimatertia questione. CAP. XVIII.]
[3.19. De decimaquart a queſtione. CAP. XIX.]
[3.20. De uer a r atione .17. queſtionis. CAP. XX.]
[3.21. De uera & intrinſeca cauſa trocble arum. CAP. XXI.]
[3.22. Depropria cauſa .24. quæſtionis. CAP. XXII.]
[3.23. De uer a cauſa .30. quæstionis. CAP. XXIIII.]
[3.24. Deratione .35. & ultimæ quæstionis. CAP. XXV.]
[4. DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.]
[4.1. Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.]
[4.2. Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.]
[4.3. Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.]
[4.4. Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.]
[4.5. Exempla dictorum. CAP.V.]
[4.6. Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.]
[4.7. Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.]
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
< >
page |< < (37) of 445 > >|
THEOREM. ARITH.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div117" type="math:theorem" level="3" n="57">
              <p>
                <s xml:id="echoid-s505" xml:space="preserve">
                  <pb o="37" rhead="THEOREM. ARITH." n="49" file="0049" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0049"/>
                g. in
                  <var>.g.h</var>
                . </s>
                <s xml:id="echoid-s506" xml:space="preserve">Nunc ex ſpeculatione præcedentis theorematis, eadem erit proportio
                  <var>.n.
                    <lb/>
                  t.</var>
                ad
                  <var>.o.u.</var>
                quæ eſt
                  <var>.n.s.</var>
                ad
                  <var>.o.r.</var>
                </s>
                <s xml:id="echoid-s507" xml:space="preserve">quare pro-
                  <lb/>
                ductum
                  <var>.k.</var>
                ex definitione ſimile erit
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0049-01a" xlink:href="fig-0049-01"/>
                producto
                  <var>.m.</var>
                cum vtraque ſint rectan-
                  <lb/>
                gula, vnde proportio
                  <var>.k.</var>
                ad
                  <var>.m.</var>
                ad pro-
                  <lb/>
                portionem
                  <var>.n.t.</var>
                ad
                  <var>.o.u.</var>
                ex .18. ſexti du-
                  <lb/>
                pla erit. </s>
                <s xml:id="echoid-s508" xml:space="preserve">Igitur proportio
                  <var>.k.</var>
                ad
                  <var>.m.</var>
                æ-
                  <lb/>
                qualis erit proportioni
                  <var>.x.</var>
                ad
                  <var>.y.</var>
                et
                  <var>.p.</var>
                  <lb/>
                ad
                  <var>.q.</var>
                et
                  <var>.i.</var>
                ad
                  <var>.l.</var>
                & permutando ſic ſe ha-
                  <lb/>
                bebit
                  <var>.k.</var>
                ad
                  <var>.i.</var>
                ſicut
                  <var>.m.</var>
                ad
                  <var>.l.</var>
                ſed
                  <var>.x.p.</var>
                ad
                  <var>.i.</var>
                  <lb/>
                ſicſe habere probatum eſt vt
                  <var>.y.q.</var>
                ad
                  <var>.l</var>
                .
                  <lb/>
                </s>
                <s xml:id="echoid-s509" xml:space="preserve">Quare ex eadem .24. quinti ſic ſe habe
                  <lb/>
                bit
                  <var>.x.p.k.</var>
                ad
                  <var>.i.</var>
                ſicut
                  <var>.y.q.m.</var>
                ad
                  <var>.l.</var>
                ſed
                  <var>.y.q.
                    <lb/>
                  m.</var>
                æqualis eſt
                  <var>.l</var>
                . </s>
                <s xml:id="echoid-s510" xml:space="preserve">Itaque
                  <var>.x.p.k.</var>
                pariter
                  <var>.i.</var>
                  <lb/>
                æqualis erit.</s>
              </p>
              <div xml:id="echoid-div117" type="float" level="4" n="1">
                <figure xlink:label="fig-0049-01" xlink:href="fig-0049-01a">
                  <image file="0049-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0049-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div119" type="math:theorem" level="3" n="58">
              <head xml:id="echoid-head74" xml:space="preserve">THEOREMA
                <num value="58">LVIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s511" xml:space="preserve">ALIVD quoque problema, nec tamen definitum, veteres propoſuerunt,
                  <lb/>
                nempe an aliquis numerus in .4. eiuſmodi partes diuidi poſſit, vt ſumma qua-
                  <lb/>
                dratorum duarum partium dupla ſit ſummæ quadratorum reliquarum duarum.</s>
              </p>
              <p>
                <s xml:id="echoid-s512" xml:space="preserve">Verum huius effectio & ſpeculatio non erit difficilis,
                  <reg norm="cum" type="context">cũ</reg>
                ſit eadem quæ præmiſsis
                  <lb/>
                proximè duobus theorematibus allata fuit, ſumpta nempe ſumma radicum quarun
                  <lb/>
                cunque ſic ſe habentium, prout dictum fuit. </s>
                <s xml:id="echoid-s513" xml:space="preserve">Verbigratia .44. cuius partes erunt.
                  <lb/>
                16. 12. 14. 2.
                  <reg norm="tunc" type="context">tũc</reg>
                progrediemur regula de tribus dicentes. </s>
                <s xml:id="echoid-s514" xml:space="preserve">Si .44 numerum propoſi-
                  <lb/>
                tum valet, quid .16. pars maior? </s>
                <s xml:id="echoid-s515" xml:space="preserve">nempe valebit partem maiorem numeri propoſi-
                  <lb/>
                ti reſpondentem .16. idem de cæteris dico.</s>
              </p>
              <p>
                <s xml:id="echoid-s516" xml:space="preserve">Porrò ſpeculatio eadem eſt cum ſuperioribus.</s>
              </p>
            </div>
            <div xml:id="echoid-div120" type="math:theorem" level="3" n="59">
              <head xml:id="echoid-head75" xml:space="preserve">THEOREMA
                <num value="59">LIX</num>
              .</head>
              <p>
                <s xml:id="echoid-s517" xml:space="preserve">CVR diuidens propoſitum numerum in duas eiuſmodi partes, vt productum
                  <lb/>
                radicum quadratarum ipſarum partium æquale ſit alteri numero propoſito,
                  <lb/>
                cuius
                  <reg norm="tamen" type="context">tamẽ</reg>
                quadratum maius
                  <reg norm="non" type="context">nõ</reg>
                ſit quadrato dimidij primi numeri propoſiti. </s>
                <s xml:id="echoid-s518" xml:space="preserve">Rectè
                  <lb/>
                ſecundum numerum propoſitum in ſeipſum multiplicat, &
                  <reg norm="eundem" type="context">eundẽ</reg>
                ex quadrato di-
                  <lb/>
                midij primi detrahit,
                  <reg norm="reſiduique" type="simple">reſiduiq́;</reg>
                quadratam radicem ſubtrahit ex dimidio ipſius pri-
                  <lb/>
                mi, ex quo datur minor pars quæſita, quaipſi dimidio coniuncta, maior pars ha-
                  <lb/>
                betur.</s>
              </p>
              <p>
                <s xml:id="echoid-s519" xml:space="preserve">Exempli gratia, ſi proponatur numerus, 20. propoſito modo, in duas partes
                  <lb/>
                eiuſmodi diuidendus, vt productum radicum æquale ſit (verbigratia) 8. </s>
                <s xml:id="echoid-s520" xml:space="preserve">Dimi-
                  <lb/>
                dium priminumeri in ſeipſum multiplicabimus, cuius quadratum erit .100. ex
                  <lb/>
                quo quadratum ſecundi numeri, nempe .64. detrahemus,
                  <reg norm="remanebitque" type="simple">remanebitq́;</reg>
                .36. cuius radi
                  <lb/>
                ce quadrata coniuncta .10. dimidio inquam primi numeri propoſiti, dabitur nume
                  <lb/>
                rus .16. pars maior, & ſubtracta à dimidio, dabitur minor pars, nempe .4.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>