Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.23. De uer a cauſa .30. quæstionis. CAP. XXIIII.]
[3.24. Deratione .35. & ultimæ quæstionis. CAP. XXV.]
[4. DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.]
[4.1. Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.]
[4.2. Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.]
[4.3. Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.]
[4.4. Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.]
[4.5. Exempla dictorum. CAP.V.]
[4.6. Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.]
[4.7. Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.]
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
[4.18. Quomodo dignoſcatur proportio uelocitatis duorum ſimilium corporum omogeniorum inaqualium. CAP. XVIII.]
[4.19. Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod uacuum non detur. CAP. XIX.]
[4.20. Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße. CAP. XX.]
[4.21. Vtrum bene Aristoteles ſenſerit de infinito. CAP. XXI.]
[4.22. Exagitatur ab Ariſtotele adductatemporis definitio. CAP. XXII.]
[4.23. Motum rectum eſſe continuum, uel dißentiente Ariſtotele. CAP. XXIII.]
[4.24. Idem uir grauisſimus an bene ſenſerit de motibus corporum uiolentis & natur alibus. CAP. XXIIII.]
[4.25. Motum rectum & natur alem non eſſe primo & per ſe quicquid Ariſtoteli uiſum ſit. CAP. XXV.]
[4.26. Omne corpus eſſe in loco proprio graue, ut Aristoteli placuit, non eft admittendum. CAP. XXVI.]
[4.27. Haud admittendam opinionem Principis Peripateticorum de circulo, & ſpbæra. CAP. XXVII.]
< >
page |< < (38) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div120" type="math:theorem" level="3" n="59">
              <pb o="38" rhead="IO. BAPT. BENED." n="50" file="0050" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0050"/>
              <p>
                <s xml:id="echoid-s521" xml:space="preserve">Hoc vt demonſtremus, primus nu-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0050-01a" xlink:href="fig-0050-01"/>
                merus linea
                  <var>.a.b.</var>
                ſignificetur, quam di-
                  <lb/>
                uiſam cogitemus in puncto
                  <var>.c.</var>
                in partes
                  <lb/>
                quæſitas, ex quo præſupponitur duas li-
                  <lb/>
                neas
                  <var>.a.c.</var>
                et
                  <var>.c.b.</var>
                duo quadrata eſſe, quæ
                  <lb/>
                in altera figura ſignificetur per
                  <var>.d.</var>
                et
                  <var>.e.</var>
                  <lb/>
                productum autem radicum cognitum
                  <var>.
                    <lb/>
                  f.</var>
                quandoquidem datum eſt, cuius qua-
                  <lb/>
                dratum æquale erit producto quadra-
                  <lb/>
                torum
                  <var>.d.e.</var>
                adinuicem, nempe
                  <var>.b.c.</var>
                in
                  <var>.a.c.</var>
                ex .19. theoremate huius. </s>
                <s xml:id="echoid-s522" xml:space="preserve">Quod verbi
                  <lb/>
                gratia ſit
                  <var>.x.</var>
                  <reg norm="itaque" type="simple">itaq;</reg>
                cognitum, quo facto, doctrinam .45. theorematis libri huius ſecuti,
                  <lb/>
                propoſitum conſequemur.</s>
              </p>
              <div xml:id="echoid-div120" type="float" level="4" n="1">
                <figure xlink:label="fig-0050-01" xlink:href="fig-0050-01a">
                  <image file="0050-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0050-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div122" type="math:theorem" level="3" n="60">
              <head xml:id="echoid-head76" xml:space="preserve">THEOREMA
                <num value="60">LX</num>
              .</head>
              <p>
                <s xml:id="echoid-s523" xml:space="preserve">CVR productum differentiæ duarum radicum in ſummam ipſarum, ſemper
                  <lb/>
                differentia ſit quadratorum ipſarum radicum.</s>
              </p>
              <p>
                <s xml:id="echoid-s524" xml:space="preserve">
                  <reg norm="Exempli" type="context">Exẽpli</reg>
                gratia, quoslibet duos numeros pro radicibus ſumpſerimus, vt potè .3. et
                  <num value="5">.
                    <lb/>
                  5.</num>
                quorum differentia eſt .2. certè ſi differentiam hanc per ſummam radicum ſcili-
                  <lb/>
                cet .8. multiplicauerimus, dabitur numerus .16. quod productum differentia eſt
                  <lb/>
                ſuorum quadratorum, nempeinter .9. et .25.</s>
              </p>
              <p>
                <s xml:id="echoid-s525" xml:space="preserve">Hoc vt ſpeculemur, duæ radices in linea
                  <var>.n.i.</var>
                ſignificentur, quarum vna ſit
                  <var>.n.c.</var>
                &
                  <lb/>
                altera
                  <var>.c.i.</var>
                ipſarum autem differentia
                  <var>.n.t.</var>
                ex quo
                  <var>.t.
                    <lb/>
                  c.</var>
                æqualis erit
                  <var>.c.i</var>
                . </s>
                <s xml:id="echoid-s526" xml:space="preserve">Tum cogitato toto quadrato
                  <var>.d.i.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0050-02a" xlink:href="fig-0050-02"/>
                cum diametro
                  <var>.d.i.</var>
                  <reg norm="ductaque" type="simple">ductaq́</reg>
                parallela lateri
                  <var>.n.d.</var>
                à
                  <lb/>
                puncto
                  <var>.c.</var>
                & altera à puncto
                  <var>.t.</var>
                & à puncto
                  <var>.o.</var>
                tertia
                  <lb/>
                ipſi
                  <var>.n.i.</var>
                & à puncto
                  <var>.a.</var>
                quarta
                  <var>.x.a.e.</var>
                parallela ipſi
                  <var>.
                    <lb/>
                  o.</var>
                inueniemus
                  <var>.b.n.</var>
                productum eſſe differentiæ
                  <var>.n.
                    <lb/>
                  t.</var>
                in ſumma radicum
                  <var>.n.i.</var>
                & cum
                  <var>.d.o.</var>
                et
                  <var>.a.o.</var>
                ſint
                  <lb/>
                quadrata radicum prædictarum: </s>
                <s xml:id="echoid-s527" xml:space="preserve">b.e. æquale erit
                  <var>.
                    <lb/>
                  n.u.</var>
                cum vtrunque horum productorum æquale ſit
                  <var>.
                    <lb/>
                  x.u.</var>
                ex quo gnomon
                  <var>.e.d.u.</var>
                æqualis erit producto
                  <var>.
                    <lb/>
                  b.n.</var>
                quod ſcire cupiebamus.</s>
              </p>
              <div xml:id="echoid-div122" type="float" level="4" n="1">
                <figure xlink:label="fig-0050-02" xlink:href="fig-0050-02a">
                  <image file="0050-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0050-02"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div124" type="math:theorem" level="3" n="61">
              <head xml:id="echoid-head77" xml:space="preserve">THEOREMA
                <num value="61">LXI</num>
              .</head>
              <p>
                <s xml:id="echoid-s528" xml:space="preserve">CVR propoſitum aliquem numerum diuiſuri in duas eiuſmodi partes, vt diffe-
                  <lb/>
                rentia radicum quadratarum æqualis ſit alteri numero propoſito, cuius ta-
                  <lb/>
                men quadratum dimidij primi quadratum non excedat. </s>
                <s xml:id="echoid-s529" xml:space="preserve">Rectè ſecundum numerum
                  <lb/>
                in ſeipſum multiplicant, productum verò ex primo numero detrahunt,
                  <reg norm="rurſusque" type="simple">rurſusq́;</reg>
                di
                  <lb/>
                midium reſidui quadrant, & quadratum hoc ex quadrato dimidij primi ſubtrahunt,
                  <lb/>
                atque ita radice quadrata reſidui, dimidio primi coniuncta, pars maior datur, qua
                  <lb/>
                ex ipſo dimidio detracta, pars minor relinquitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s530" xml:space="preserve">Exempli gratia, propoſito numero .20. ita ut propoſitum eſt, diuidendo, nem-
                  <lb/>
                pe vt differentia radicum quadratarum dictarum partium æqualis ſit binario, bina-
                  <lb/>
                rium hocin ſeipſum multiplicabimus, cuius quadratum .4. è primo numero .20. de­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>