Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.23. De uer a cauſa .30. quæstionis. CAP. XXIIII.]
[3.24. Deratione .35. & ultimæ quæstionis. CAP. XXV.]
[4. DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.]
[4.1. Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.]
[4.2. Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.]
[4.3. Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.]
[4.4. Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.]
[4.5. Exempla dictorum. CAP.V.]
[4.6. Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.]
[4.7. Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.]
[4.8. Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.]
[4.9. Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.]
[4.10. Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.]
[4.11. Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.]
[4.12. Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.]
[4.13. Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.]
[4.14. Quid ſequatur ex ſupradistis. CAP. XIIII.]
[4.15. Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.]
[4.16. Fdipſum aliter demonſtr atur. CAP. XVI.]
[4.17. De alio Aristo. lapſu. CAP. XVII.]
[4.18. Quomodo dignoſcatur proportio uelocitatis duorum ſimilium corporum omogeniorum inaqualium. CAP. XVIII.]
[4.19. Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod uacuum non detur. CAP. XIX.]
[4.20. Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße. CAP. XX.]
[4.21. Vtrum bene Aristoteles ſenſerit de infinito. CAP. XXI.]
[4.22. Exagitatur ab Ariſtotele adductatemporis definitio. CAP. XXII.]
[4.23. Motum rectum eſſe continuum, uel dißentiente Ariſtotele. CAP. XXIII.]
[4.24. Idem uir grauisſimus an bene ſenſerit de motibus corporum uiolentis & natur alibus. CAP. XXIIII.]
[4.25. Motum rectum & natur alem non eſſe primo & per ſe quicquid Ariſtoteli uiſum ſit. CAP. XXV.]
[4.26. Omne corpus eſſe in loco proprio graue, ut Aristoteli placuit, non eft admittendum. CAP. XXVI.]
[4.27. Haud admittendam opinionem Principis Peripateticorum de circulo, & ſpbæra. CAP. XXVII.]
< >
page |< < (59) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div177" type="math:theorem" level="3" n="90">
              <p>
                <s xml:id="echoid-s776" xml:space="preserve">
                  <pb o="59" rhead="THEOREM. ARIT." n="71" file="0071" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0071"/>
                eſſe gnomoni
                  <var>.e.c.u.</var>
                  <reg norm="itemque" type="simple">itemq́;</reg>
                gnomonem
                  <var>.b.f.d.</var>
                æqualem gnomoni
                  <var>.b.o.d.</var>
                at hic gno-
                  <lb/>
                mon
                  <var>.b.o.d.</var>
                ex præſuppoſito, maior eſt gnomone
                  <var>.e.o.u.</var>
                duabus vnitatibus
                  <var>.b.</var>
                et
                  <var>.d.</var>
                  <lb/>
                Itaque etiam gnomon
                  <var>.b.f.d.</var>
                duabus vnitatibus gnomonem
                  <var>.e.c.u.</var>
                ſuperabit. </s>
                <s xml:id="echoid-s777" xml:space="preserve">Qua-
                  <lb/>
                re
                  <var>.b.f.d.</var>
                erit impar immediatè ſequens ternarium, qui coniunctus quadrato
                  <var>.o.c.</var>
                  <lb/>
                quadratum ſubſequens componet. </s>
                <s xml:id="echoid-s778" xml:space="preserve">Eadem ratione probabitur de quadrato
                  <var>.o.n.</var>
                ſe
                  <lb/>
                quenti
                  <var>.o.f.</var>
                & gnomone
                  <var>.i.n.a.</var>
                cum hic ordo ſpeculationis ſit vniuerſalis. </s>
                <s xml:id="echoid-s779" xml:space="preserve">In
                  <lb/>
                quo cernitur quemlibet gnomonem ſibi
                  <reg norm="contiguum" type="context">contiguũ</reg>
                inferiorem ſemper duabus vni-
                  <lb/>
                tat ibus excedere, cumque quadrata non niſi gnomonibus ſibi inuicem ſuccedant.
                  <lb/>
                </s>
                <s xml:id="echoid-s780" xml:space="preserve">Sed
                  <reg norm="cum" type="context">cũ</reg>
                primus
                  <var>.e.c.u.</var>
                diſpar fuerit,
                  <reg norm="proculdubio" type="simple">ꝓculdubio</reg>
                  <reg norm="etiam" type="context">etiã</reg>
                  <reg norm="neceſſarioque" type="simple">neceſſarioq́;</reg>
                cæteri diſpares
                  <reg norm="erunt" type="context">erũt</reg>
                .
                  <lb/>
                </s>
                <s xml:id="echoid-s781" xml:space="preserve">Ex qua ſpeculatione, oritur regula ab antiquis tradita
                  <lb/>
                inueniendi vltimi numeri diſparis
                  <reg norm="concurrentis" type="context">cõcurrentis</reg>
                ad
                  <reg norm="compo­ ſitionem" type="context">cõpo­
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0071-01a" xlink:href="fig-0071-01"/>
                  ſitionem</reg>
                alicuius quadrati. </s>
                <s xml:id="echoid-s782" xml:space="preserve">Vt ſi quis ſeire deſideret nu-
                  <lb/>
                merum vltimum diſparem, quo mediante quadratum
                  <var>.
                    <lb/>
                  o.n.</var>
                conſtitutum fuit, quod aliud non eſt quam ſcire
                  <lb/>
                quantus ſit numerus vltimi gnomonis
                  <var>.i.n.a.</var>
                æqualis gno
                  <lb/>
                moni
                  <var>.i.o.a</var>
                . </s>
                <s xml:id="echoid-s783" xml:space="preserve">Itaque vt ſciamus hunc gnomonem
                  <var>.i.o.a.</var>
                  <lb/>
                patet duplicandam eſſe radicem
                  <var>.o.e.b.i.</var>
                  <reg norm="dabiturque" type="simple punctuation">dabiturq́,</reg>
                  <var>.o.e.
                    <lb/>
                  b.i.</var>
                et
                  <var>.o.u.d.a.</var>
                vbi bis reperitur
                  <var>.o.</var>
                nos autem tantummo
                  <lb/>
                do quærimus ſcire gnomonem .i.b.e.o.u.d.a. </s>
                <s xml:id="echoid-s784" xml:space="preserve">Itaque
                  <lb/>
                minor eſt vnitate duplo radicis, cum unitas
                  <var>.o.</var>
                bis repe-
                  <lb/>
                tatur, quæ tamen in gnomone ſemel tantum ſumebatur.</s>
              </p>
              <div xml:id="echoid-div177" type="float" level="4" n="1">
                <figure xlink:label="fig-0071-01" xlink:href="fig-0071-01a">
                  <image file="0071-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0071-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div179" type="math:theorem" level="3" n="91">
              <head xml:id="echoid-head108" xml:space="preserve">THEOREMA
                <num value="91">XCI</num>
              .</head>
              <p>
                <s xml:id="echoid-s785" xml:space="preserve">CVR ſumma quadratorum, quorum radices ſunt in proportione ſeſquitertia
                  <lb/>
                nempe .4. ad .3. quadrata ſit.</s>
              </p>
              <p>
                <s xml:id="echoid-s786" xml:space="preserve">Exempli gratia, ſumemus quadratum .3. ſcilicet 9. quod in ſummam cum qua-
                  <lb/>
                drato .4. colligemus, nempè .16.
                  <reg norm="eritque" type="simple">eritq́;</reg>
                quadratum .25. & ita quadratum .6. hoc eſt
                  <num value="36">.
                    <lb/>
                  36.</num>
                collectum cum quadrato .8. nempè .64. efficiet quadratum .100. ita etiam qua-
                  <lb/>
                dratum .9. hoceſt .81. coniunctum quadrato .12. nempè .144. producet quadra-
                  <lb/>
                tum .225.</s>
              </p>
              <p>
                <s xml:id="echoid-s787" xml:space="preserve">In cuius gratiam ſint duo quadrata ſubſcripta
                  <var>.q.o.</var>
                et
                  <var>.q.a.</var>
                quorum radices ſint
                  <var>.q.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0071-02a" xlink:href="fig-0071-02"/>
                g. et
                  <var>.q.p.</var>
                hoc eſt
                  <var>.q.g.</var>
                quatuor vnitatum, et
                  <var>.q.
                    <lb/>
                  p.</var>
                trium, ex quo
                  <var>.q.a.</var>
                erit .16. vnitatum et
                  <var>.q.o.</var>
                  <lb/>
                nouem. </s>
                <s xml:id="echoid-s788" xml:space="preserve">Ad hæc cogitemus applicari quadra-
                  <lb/>
                to
                  <var>.q.a.</var>
                gnomonem
                  <var>.f.s.h.</var>
                tam amplum ſiue la-
                  <lb/>
                tum
                  <reg norm="quam" type="context">quã</reg>
                gnomon
                  <var>.b.a.g.</var>
                nempè vt
                  <var>.h.</var>
                ſit æqua
                  <lb/>
                lis .g: g. verò differentia ſit qua
                  <var>.q.g.</var>
                maior eſt
                  <var>.
                    <lb/>
                  q.p.</var>
                  <reg norm="huncque" type="simple">huncq́;</reg>
                gnomonem
                  <var>.f.s.h.</var>
                dico ęqualem eſ
                  <lb/>
                ſe quadrato
                  <var>.q.o.</var>
                nam ex preſuppoſito
                  <var>.g.</var>
                terra
                  <lb/>
                dicem
                  <var>.q.p.</var>
                ingreditur, & quater
                  <var>.q.g.</var>
                ex quo,
                  <lb/>
                tres partes
                  <var>.q.k.p.</var>
                inter ſe æquales ſunt vnde
                  <lb/>
                etiam quadratum
                  <var>.q.o.</var>
                nouem partibus ſuper-
                  <lb/>
                ficialibus quadratis conſtabit, quarum ſingula
                  <lb/>
                rum radix æqualis erit
                  <var>.g.</var>
                cumque præcedenti
                  <lb/>
                theoremate didicerimus quemlibet gnomo-
                  <lb/>
                nem quadrati immediatè ſequentis æquę amplitudinis cum gnomone præcedentis, </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>