Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Table of contents

< >
[3.13.] Quòd Ariſtotelisratio in 6. quæſtione poſit a non ſit admittenda. CAP. XIII.
[3.14.] Quòdrationes ab Ariſtotele de octaua quæstione confictæ ſufficient es non ſint. CAP. XIIII.
[3.15.] Quod Aristotelis ratio none queſtionis admittendanon ſit. CAP. XV.
[3.16.] Quod Aristotelis rationes de decima queſtione ſint reijciende. CAP. XVI.
[3.17.] De uer a cauſa .12. questionis mechanice. CAP. XVII.
[3.18.] De decimatertia questione. CAP. XVIII.
[3.19.] De decimaquart a queſtione. CAP. XIX.
[3.20.] De uer a r atione .17. queſtionis. CAP. XX.
[3.21.] De uera & intrinſeca cauſa trocble arum. CAP. XXI.
[3.22.] Depropria cauſa .24. quæſtionis. CAP. XXII.
[3.23.] De uer a cauſa .30. quæstionis. CAP. XXIIII.
[3.24.] Deratione .35. & ultimæ quæstionis. CAP. XXV.
[4.] DISPVTATIONES DE QVIBVSDAM PLACITIS ARISTOTELIS.
[4.1.] Qualiter & ubi Ariſtoteles de uelocitate motuum natura-lium localium aliter tractauerit quam nos ſentiamus. CAP.I.
[4.2.] Quædam ſupponenda ut conſtet cur circa uelocit atem motuum natur alium localium ab Ariſtotelis placitis recedamus. CAP. II.
[4.3.] Poſſe uelocitatem alicuius corporis proportionem contrariam in diuerſis medijs habere cum denſitate eorum. CAP. III.
[4.4.] Oſcitanter ab Ariſtotele nonnibil prolatum cap 8. lib. 4 Phyſicorum. CAP. IIII.
[4.5.] Exempla dictorum. CAP.V.
[4.6.] Quod proportiones ponderum eiuſdem corporis in diuerſis medijs pro portiones eorum mediorum denſit atum non ſeruant. Unde ne-ceßariò inæquales proportiones uelocitatum producuntur. CAP. VI.
[4.7.] Corpora grauia aut leuia eiuſdem figur æ et materiæ ſed inæqualis magnitudinis, in ſuis motibus natur alibus uelocit atis, in eo dem medio, proportionem longè diuerſam ſeruatura eße quam Aristoteliuiſum fuerit. CAP. VII.
[4.8.] Quod duo corpor a in æqualia eiuſdem materia in diuerſis medijs eandem uelocitatis proportionem retinebunt. CAP. VIII.
[4.9.] Anrectè Aristoteles diſeruerit de proportionibus mo-tuum in uacuo. CAP. IX.
[4.10.] Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-te mouerentur. CAP.X.
[4.11.] Corpora licet inæqualia eiuſdem materiæ & figuræ, ſireſiſten-tias habuerint ponderibus proportionales æqualiter mouebuntur. CAP. XI.
[4.12.] Maior hic demonſir atur eſſe proportio ponder is corpor is den ſioris ad pondus minus denſi in medijs dẽſioribus, quam ſit eorundem corporum in medio minus denſo, nec corporum ponder a ſeruare proportionem denſitatis mediorum. CAP. XII.
[4.13.] Longe aliter ueritatem ſe habere quam Aristoteles doceat in fine libri ſeptimi phyſicorum. CAP. XIII.
[4.14.] Quid ſequatur ex ſupradistis. CAP. XIIII.
[4.15.] Numrestè ſenſerit Philoſophus reſistentias proportionales eße cum corporibus mobilibus. CAP. XV.
[4.16.] Fdipſum aliter demonſtr atur. CAP. XVI.
[4.17.] De alio Aristo. lapſu. CAP. XVII.
< >
page |< < (71) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div207" type="math:theorem" level="3" n="110">
              <p>
                <s xml:id="echoid-s952" xml:space="preserve">
                  <pb o="71" rhead="THEOREM. ARIT." n="83" file="0083" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0083"/>
                te verò à ſecundo milliario vno primus antecedatur, ex communi ſcientia neceſſe
                  <lb/>
                eſt ſecundum tot diebus
                  <reg norm="cum" type="context">cũ</reg>
                primo iter agere quot ſunt
                  <var>.o.n.</var>
                qui ſimul æquales erunt
                  <var>.
                    <lb/>
                  u.n.</var>
                ſed
                  <var>.u.n.</var>
                minor eft numero milliarium diurnorum primi vnitate
                  <var>.e</var>
                . </s>
                <s xml:id="echoid-s953" xml:space="preserve">Itaque rectè
                  <lb/>
                ſequemur regulam, quæ iubet ex numero milliarium vnitatem demere, quo nu
                  <lb/>
                merum dierum habere poſſimus.</s>
              </p>
            </div>
            <div xml:id="echoid-div209" type="math:theorem" level="3" n="111">
              <head xml:id="echoid-head128" xml:space="preserve">THEOREMA
                <num value="111">CXI</num>
              .</head>
              <p>
                <s xml:id="echoid-s954" xml:space="preserve">SI verò ſecundi viatoris progreſſio per ternarium aſcenderet, ſumpto initio ab
                  <lb/>
                ipſo ternario, animaduertendum eſt an numerus milliarium diurnorum primi,
                  <lb/>
                ternario menſuretur necne, etenim ſi menſuretur, tandem aliquando paria millia-
                  <lb/>
                ria conficient, quæ dies ſit
                  <var>.u.n.</var>
                </s>
                <s xml:id="echoid-s955" xml:space="preserve">quare ſub
                  <lb/>
                  <figure xlink:label="fig-0083-01" xlink:href="fig-0083-01a" number="114">
                    <image file="0083-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0083-01"/>
                  </figure>
                  <var>u.n.</var>
                totidem quot ſupra termini
                  <reg norm="erunt" type="context">erũt</reg>
                ,
                  <lb/>
                &
                  <reg norm="cum" type="context">cũ</reg>
                  <var>.o.n.</var>
                tertia ſit pars
                  <var>.u.n.</var>
                ex .95. theo-
                  <lb/>
                remate. </s>
                <s xml:id="echoid-s956" xml:space="preserve">Itaque tota
                  <var>.o.f.</var>
                minor erit
                  <lb/>
                duabus tertijs
                  <var>.u.n.</var>
                vnitate, vtiam re-
                  <lb/>
                ctè ſumendæ ſint duæ tertiæ partes
                  <var>.u.n.</var>
                  <lb/>
                ex quibus vnitas detrahatur ſuperſitq́ue
                  <lb/>
                numerus
                  <var>.o.f.</var>
                dierum quæſitorum.</s>
              </p>
            </div>
            <div xml:id="echoid-div211" type="math:theorem" level="3" n="112">
              <head xml:id="echoid-head129" xml:space="preserve">THEOREMA
                <num value="112">CXII</num>
              .</head>
              <p>
                <s xml:id="echoid-s957" xml:space="preserve">CVM verò milliarium numerus p rimi viatoris metirinon poterit à numero
                  <lb/>
                aſcendente ſecundi, patet nullam futuram diem qua pari milliaria conficient,
                  <lb/>
                </s>
                <s xml:id="echoid-s958" xml:space="preserve">quare illa vltima qua primus ſecundum antecedet, vno aut duobus milliaribus an-
                  <lb/>
                tecedet in præſenti caſu. </s>
                <s xml:id="echoid-s959" xml:space="preserve">Antecedat itaque duobus milliaribus,
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                dies
                  <var>.u.n.</var>
                & alte
                  <lb/>
                ra
                  <var>.t.i.</var>
                ſecundus primum vno milliari ſuperabit, ita quod ſub
                  <var>.t.i.</var>
                non poterunt plu-
                  <lb/>
                res integros dies iter agere, quam ambulauerunt ante diem
                  <var>.u.n.</var>
                hoc eſt vſquequo
                  <lb/>
                ſecundtis iunctus ſit primo, qui numerus dierum, tertia parte
                  <var>.o.n.</var>
                ipſius
                  <var>.u.n.</var>
                vnitate
                  <lb/>
                minor erit, cum ex .95. theoremate
                  <var>.o.n.</var>
                ſit tertia pars
                  <var>.u.n.</var>
                ex quo numerus
                  <var>.o.f.</var>
                ter-
                  <lb/>
                minorum aut dierum intergrorum cognitus erit, qui ſi cum numero alcendente
                  <lb/>
                cognoſcetur, ſtatim ex .99. theoremate deueniemus in cognitionem vltimi diei in
                  <lb/>
                tegri
                  <var>.s.f.</var>
                atque ita etiam totius ſummæ progreſſionis ex .95. theoremate. </s>
                <s xml:id="echoid-s960" xml:space="preserve">Iam verò
                  <lb/>
                cognito numero milliarium diurnorum primi, ſimul cum numero terminorum, aut
                  <lb/>
                dierum conſequenter nouerimus rectanguli ſummam, hoc eſt productum à primo
                  <lb/>
                viatore formatum, quarum duarum ſummarum in præſenti caſu ſemper ea, quæ
                  <lb/>
                huiuſmodi producti eſt, maior erit, cum conſtitutum fuerit ſecundum viatorem à
                  <lb/>
                primo ſuperari ipſa die
                  <var>.u.n.</var>
                vno milliari amplius quam ſequente die
                  <var>.t.i.</var>
                primus à ſe
                  <lb/>
                cundo ſuperatur, tum pari gradu iter egerunt ſub
                  <var>.t.i.</var>
                quo ſupra
                  <var>.u.n.</var>
                ambulauerant.
                  <lb/>
                </s>
                <s xml:id="echoid-s961" xml:space="preserve">Hoc animaduertendo, quòd ſi ſumma progreſſionis maior eſſet rectangulo, ex ea
                  <lb/>
                ſumma neceſſe eſſet
                  <reg norm="numerum" type="context">numerũ</reg>
                mil
                  <lb/>
                liarium vltimi termini in ſumma
                  <lb/>
                  <figure xlink:label="fig-0083-02" xlink:href="fig-0083-02a" number="115">
                    <image file="0083-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0083-02"/>
                  </figure>
                incluſi detrahere, & reſiduo ope-
                  <lb/>
                rari. </s>
                <s xml:id="echoid-s962" xml:space="preserve">Nunc verò ſummam pro-
                  <lb/>
                greſſionis exſumma rectanguli à
                  <lb/>
                primo viatore facti ſubtrahi de-
                  <lb/>
                bet,
                  <reg norm="reſiduumque" type="simple">reſiduumq́;</reg>
                ſeruari
                  <reg norm="voceturque" type="simple">voceturq́;</reg>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>