Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
171
(159)
172
(160)
173
(161)
174
(162)
175
(163)
176
(164)
177
(165)
178
(166)
179
(167)
180
(168)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(141)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div308
"
type
="
chapter
"
level
="
2
"
n
="
2
">
<
div
xml:id
="
echoid-div337
"
type
="
section
"
level
="
3
"
n
="
15
">
<
pb
o
="
141
"
n
="
153
"
file
="
0153
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0153
"/>
</
div
>
</
div
>
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
head
xml:id
="
echoid-head194
"
xml:space
="
preserve
">DE MECHANICIS.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1692
"
xml:space
="
preserve
">
<
emph
style
="
sc
">SCripservnt</
emph
>
multi multa, & quidem ſcitißimè, de mechn
<
unsure
/>
-
<
lb
/>
nicis, at cum natura
<
reg
norm
="
vſusque
"
type
="
simple
">vſusq;</
reg
>
aliquid ſemper vel nouum, vel
<
lb
/>
Latens in apertum emittere ſoleant, nec ingenui aut grati ſit
<
lb
/>
animi, posteris inuidere, ſi quid ei contigerit comperuiße prius
<
lb
/>
tenebris inuolutum: </
s
>
<
s
xml:id
="
echoid-s1693
"
xml:space
="
preserve
">cum tam multa ipſe ex aliorum diligentia
<
lb
/>
ſit conſequut us. </
s
>
<
s
xml:id
="
echoid-s1694
"
xml:space
="
preserve
">Paucula
<
reg
norm
="
quædam
"
type
="
context
">quædã</
reg
>
futùra, vt reor, non ingrata his
<
lb
/>
qui in biſce mechanicis verſantur, nuſquam ante bac tentata,
<
lb
/>
aut ſatis exastè explicata in medium proferre volui: </
s
>
<
s
xml:id
="
echoid-s1695
"
xml:space
="
preserve
">quo vel iuuandi deſiderium, vel
<
lb
/>
ſaltem non ocioſi ingenioli argumentum aliquod exbiberem: </
s
>
<
s
xml:id
="
echoid-s1696
"
xml:space
="
preserve
">at que vel boc vno modo me
<
lb
/>
inter bumanos vixiſſe testatum relinquerem.</
s
>
</
p
>
<
div
xml:id
="
echoid-div340
"
type
="
section
"
level
="
3
"
n
="
1
">
<
head
xml:id
="
echoid-head195
"
style
="
it
"
xml:space
="
preserve
">De differentia ſitus brachiorum libra.</
head
>
<
head
xml:id
="
echoid-head196
"
xml:space
="
preserve
">CAP.I.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1697
"
xml:space
="
preserve
">
<
emph
style
="
sc
">OMne</
emph
>
pondus poſitum in extremitate alicuius brachij libræ maiorem, aut mi-
<
lb
/>
<
handwritten
xlink:label
="
hd-0153-01
"
xlink:href
="
hd-0153-01a
"
number
="
1
"/>
norem grauitatem habet, pro diuerſa ratione ſitus ipſius brachij. </
s
>
<
s
xml:id
="
echoid-s1698
"
xml:space
="
preserve
">ſit exe
<
unsure
/>
mpli
<
lb
/>
gratia
<
var
>.B.</
var
>
centrum, aut, quod diuidit brachia alicuius libræ, &
<
var
>.A.B.Q.</
var
>
vertica-
<
lb
/>
lis linea, aut, vt rectius dicam, axis orizontis, &
<
var
>.B.C.</
var
>
vnum brachium dictæ li-
<
lb
/>
bræ, & in
<
var
>.C.</
var
>
ſit pondus, &
<
var
>.C.O.</
var
>
linea inclinationis, ſeuicineris
<
unsure
/>
<
var
>.C.</
var
>
verſus cen-
<
lb
/>
trum mundi, cum qua
<
var
>.B.C.</
var
>
angulum rectum conſtituat in puncto
<
var
>.C</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1699
"
xml:space
="
preserve
">Exiſtente
<
lb
/>
igitur in huiuſmodi ſitu brachio
<
var
>.B.C.</
var
>
dico pondus
<
var
>.C.</
var
>
grauius futurum, quam
<
lb
/>
in alio quolibet ſitu. </
s
>
<
s
xml:id
="
echoid-s1700
"
xml:space
="
preserve
">quia ſupra centrum
<
var
>.B.</
var
>
omninò non quieſcet, quemadmodum
<
lb
/>
in quouis alio ſitu faceret. </
s
>
<
s
xml:id
="
echoid-s1701
"
xml:space
="
preserve
">Ad quod intelligendum, ſit dictum brachium, in ſitu
<
var
>.B.
<
lb
/>
F.</
var
>
cum eodem pondere in puncto
<
var
>.F.</
var
>
& linea itineris ſeu inclinationis dicti ponderis
<
lb
/>
ſit
<
var
>.F.u.M.</
var
>
per quam lineam dictum pondus progredi non poteſt, niſi brachium
<
var
>.B.F.</
var
>
<
lb
/>
breuius redderetur. </
s
>
<
s
xml:id
="
echoid-s1702
"
xml:space
="
preserve
">Vnde clarum erit
<
lb
/>
<
figure
xlink:label
="
fig-0153-01
"
xlink:href
="
fig-0153-01a
"
number
="
209
">
<
image
file
="
0153-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0153-01
"/>
</
figure
>
quòd pondus
<
var
>.F.</
var
>
aliquantulum ſupra cen
<
lb
/>
trum
<
var
>.B.</
var
>
mediante brachio
<
var
>.B.F.</
var
>
nititur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1703
"
xml:space
="
preserve
">Eſt quidem verum, quòd pondus
<
var
>.C.</
var
>
nec
<
lb
/>
ipſum etiam per lineam
<
var
>.C.O.</
var
>
proficiſce-
<
lb
/>
tur, quia iter extremitatis brachij eſt cir-
<
lb
/>
cularis, &
<
var
>.C.O.</
var
>
in vno
<
reg
norm
="
quodam
"
type
="
context
">quodã</
reg
>
puncto eſt
<
lb
/>
contingens. </
s
>
<
s
xml:id
="
echoid-s1704
"
xml:space
="
preserve
">Sit hociter
<
var
>.A.C.Q</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1705
"
xml:space
="
preserve
">Opor-
<
lb
/>
tet nunc præſupponere pondus extremi-
<
lb
/>
tatis brachij deberetanto magis
<
reg
norm
="
centro
"
type
="
context
">cẽtro</
reg
>
<
var
>.B.</
var
>
<
lb
/>
inniti, quanto magis linea ſuæ inclinatio-
<
lb
/>
nis (ponamus
<
var
>.F.u.M.</
var
>
) propinqua erit di
<
lb
/>
cto centro
<
var
>.B.</
var
>
quod ſequenti cap. proba-
<
lb
/>
bo, vt exempli gratia, ſit
<
var
>.F.</
var
>
ſuper
<
var
>.u.</
var
>
pun-
<
lb
/>
ctum medij ex æquo inter
<
var
>.C.</
var
>
et
<
var
>.B.</
var
>
qua-
<
lb
/>
propter
<
var
>.u.B.</
var
>
æqualis erit
<
var
>.u.C.</
var
>
vndeſe- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>