Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
161
(149)
162
(150)
163
(151)
164
(152)
165
(153)
166
(154)
167
(155)
168
(156)
169
(157)
170
(158)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(153)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div340
"
type
="
chapter
"
level
="
2
"
n
="
3
">
<
div
xml:id
="
echoid-div358
"
type
="
section
"
level
="
3
"
n
="
10
">
<
pb
o
="
153
"
rhead
="
DE MECHAN.
"
n
="
165
"
file
="
0165
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0165
"/>
</
div
>
<
div
xml:id
="
echoid-div362
"
type
="
section
"
level
="
3
"
n
="
11
">
<
head
xml:id
="
echoid-head214
"
style
="
it
"
xml:space
="
preserve
">Quod Aristo. in prima mechanicarum quæstionum eius quod
<
lb
/>
inquir it, uer am cauſam non attulerit.</
head
>
<
head
xml:id
="
echoid-head215
"
xml:space
="
preserve
">CAP. XI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1823
"
xml:space
="
preserve
">QVærens Ariſtoteles vnde fiat, vt eæ libræ, quæ brachia habent alijs longiora,
<
lb
/>
ſint exactiores cæteris, ait hoc euenire ratione maioris velocitatis extremo
<
lb
/>
rum earundem. </
s
>
<
s
xml:id
="
echoid-s1824
"
xml:space
="
preserve
">Quod verum non eſt; </
s
>
<
s
xml:id
="
echoid-s1825
"
xml:space
="
preserve
">quia hîc effectus nil aliud eſt, quam clarius pro
<
lb
/>
ponere ob omnium oculos obliquitatem brachiorum à linea orizontali, & oſtende-
<
lb
/>
re etiam facilius à dicto orizontali ſitu exire brachia iam dicta. </
s
>
<
s
xml:id
="
echoid-s1826
"
xml:space
="
preserve
">Quæ quidem per ſe
<
lb
/>
neque à velocitate, neque à tarditate motus, ſed à ratione vectis, & à ma-
<
lb
/>
iori interuallo inter ſecundum ſitum extremorum à primo proficiſcuntur. </
s
>
<
s
xml:id
="
echoid-s1827
"
xml:space
="
preserve
">Vt exem-
<
lb
/>
pli gratia, imaginemur magnam libram
<
var
>.A.B.</
var
>
orizontalem, cuius centrum ſit
<
var
>.E.</
var
>
et
<
lb
/>
pondus
<
var
>.B.</
var
>
maius ſit pondere ipſius
<
var
>.A.</
var
>
vnde conceditur, quòd ob hanc rationem di-
<
lb
/>
cta libra ſitum mutabit, qui ſecundus ſitus ſit in
<
var
>.H.F</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1828
"
xml:space
="
preserve
">Imaginemur etiam
<
reg
norm
="
paruam
"
type
="
context
">paruã</
reg
>
<
reg
norm
="
quan- dam
"
type
="
context
">quã-
<
lb
/>
dam</
reg
>
libram
<
var
>.a.e.b.</
var
>
orizontalem, quæ pondera habeat
<
var
>.a.</
var
>
et
<
var
>.b.</
var
>
æqualia duobus ponde
<
lb
/>
ribus alterius libræ & ſecundus ſitus ſit in
<
var
>.h.f.</
var
>
ita tamen vt anguli circa
<
var
>.e.</
var
>
æquales
<
lb
/>
ſint ijs, qui ſunt circa
<
var
>.E.</
var
>
ideſt
<
var
>.b.e.f.</
var
>
ſit ęqualis
<
var
>.B.E.F</
var
>
. </
s
>
<
s
xml:id
="
echoid-s1829
"
xml:space
="
preserve
">Nunc dico ſitum
<
var
>.H.F.</
var
>
<
reg
norm
="
exa- ctiorem
"
type
="
context
">exa-
<
lb
/>
ctiorẽ</
reg
>
futurum & clariorem ſitu
<
var
>.h.e.f.</
var
>
ratione interualli
<
var
>.B.F.</
var
>
maioris, interuallo
<
var
>.
<
lb
/>
b.f.</
var
>
quod
<
var
>.B.F.</
var
>
in eadem proportione maior eſt ipſo
<
var
>.b.f.</
var
>
in qua
<
var
>.B.E.</
var
>
maius eſt
<
var
>.b.e.</
var
>
<
lb
/>
quod autem interuallum
<
var
>.B.F.</
var
>
breuiori, aut longiori temporis ſpacio quam
<
var
>.b.f.</
var
>
ſit fa
<
lb
/>
ctum, nil planè refert. </
s
>
<
s
xml:id
="
echoid-s1830
"
xml:space
="
preserve
">Ratione vectis deinde, dico
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ſi ſupponemus duas libras pa-
<
lb
/>
res
<
reg
norm
="
æqualesque
"
type
="
simple
">æqualesq́;</
reg
>
in omni alio reſpectu, præter quàm in brachiorum longitudine, pon-
<
lb
/>
dus
<
var
>.B.</
var
>
maiorem vim habebit ad deprimendum brachium
<
var
>.E.B.</
var
>
quàm pondus
<
var
>.b.</
var
>
quia
<
lb
/>
libræ materiales, cum ſuſtineantur ab
<
var
>.E.e.</
var
>
& non à puncto mathematico, ſed
<
lb
/>
à linea, aut ſuperficie naturali in materia exiſtente. </
s
>
<
s
xml:id
="
echoid-s1831
"
xml:space
="
preserve
">vnde aliqua reſiſtentia ipſi mo-
<
lb
/>
tui brachiorum oritur, & hanc ob cauſam, ſupponendo hanc reſiſtentiam æqualem
<
lb
/>
tam in
<
var
>.E.</
var
>
quàm in
<
var
>.e.</
var
>
clarum erit ob ea, quæ in cap .4. huius tractatus oſtendi
<
var
>.B.</
var
>
cum
<
lb
/>
minus dependeat ab
<
var
>.E.</
var
>
aut minus quoque eidem
<
var
>.E.</
var
>
annitatur, ponderoſum magis
<
lb
/>
futurum, quam
<
var
>.b.</
var
>
& hac de cauſa mouebit ad partem inferiorem, maiori cum agilita
<
lb
/>
te, brachium
<
var
>.E.B.</
var
>
multo magis etiam illud ipſum deprimet, ideſt maiorem etiam an
<
lb
/>
gulum
<
var
>.B.E.F.</
var
>
quàm erit angulus
<
var
>.b.e.f.</
var
>
faciet.</
s
>
</
p
>
<
figure
position
="
here
"
number
="
223
">
<
image
file
="
0165-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0165-01
"/>
</
figure
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>