Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

List of thumbnails

< >
191
191 (179)
192
192 (180)
193
193 (181)
194
194 (182)
195
195 (183)
196
196 (184)
197
197 (185)
198
198 (186)
199
199 (187)
200
200 (188)
< >
page |< < (186) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div426" type="section" level="3" n="27">
              <p>
                <s xml:id="echoid-s2233" xml:space="preserve">
                  <pb o="186" rhead="IO. BAPT. BENED." n="198" file="0198" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0198"/>
                cap .4. lib. 4. de cęlo, etiam fi triangulus ex duobus angulis rectis conſurgat, ſed ſunt
                  <lb/>
                figurę infinitorum angulorum rectorum, & hanc ob cauſam à me dicuntur vltimæ &
                  <lb/>
                perfectę, quia infinito nihil addi poteſt. </s>
                <s xml:id="echoid-s2234" xml:space="preserve">Numerus angulorum rectorum circuli, eft
                  <lb/>
                minor duplo infinito per duo infinita angulorum contingentiæ, quæ duo infinita mi
                  <lb/>
                nora funt quouis angulo acuto rectilineo, & numerus angulorum rectorum
                  <reg norm="folidorum" type="context">folidorũ</reg>
                  <lb/>
                ſphęræ, minor eft quadruplo infinito per .4. infinita angulorum ſolidorum
                  <reg norm="contingen- tiæ" type="context">cõtingen-
                    <lb/>
                  tiæ</reg>
                , quæ .4. infinita, minora ſunt quouis angulo ſolido acuto terminato à tribus pla-
                  <lb/>
                nis. </s>
                <s xml:id="echoid-s2235" xml:space="preserve">Triangulus inter figuras planas ſuperſiciales eft primus, & circulus vltimus; </s>
                <s xml:id="echoid-s2236" xml:space="preserve">&
                  <lb/>
                pyramis quadrilatera, inter corpora eft prima, & ſphęra vltima.</s>
              </p>
            </div>
            <div xml:id="echoid-div427" type="section" level="3" n="28">
              <head xml:id="echoid-head297" style="it" xml:space="preserve">Occultam fuiße grauisſimo Stagirit & canſam ſcintilla-
                <lb/>
              tionis ſtellarum.</head>
              <head xml:id="echoid-head298" xml:space="preserve">CAP. XXVIII.</head>
              <p>
                <s xml:id="echoid-s2237" xml:space="preserve">VBi Ariſtoteles ait ſcintillationem ſtellarum ſieriratione aſpectus @oſtri ob, ma
                  <lb/>
                ximam diſtantiam, maximum errorem committit, vt etiam facid quum putat
                  <lb/>
                vifionem fieri extramittendo, contra id, quod alio loco, immo contra veritatem ip
                  <lb/>
                ſam afferuit. </s>
                <s xml:id="echoid-s2238" xml:space="preserve">Scintillatio ergo ſtellarum, neque aſpectus noſtri ratione, neque ali-
                  <lb/>
                cuius mutationis earundem ſtellarum, ſed ab inæqualitate motus corporum diapha
                  <lb/>
                norum mediorum naſcitur,
                  <reg norm="quemadmodum" type="wordlist">quẽadmodum</reg>
                clarè cernitur, quòd fi inter aliquod obie
                  <lb/>
                ctum, & nos, aliquis ſumus, qui aſcendat, intercefferit, videbimus obiectum illud qua
                  <lb/>
                ſi tremere. </s>
                <s xml:id="echoid-s2239" xml:space="preserve">Hoc autem tantò magis fiet, quantò magis diſtabit obiectum ab ipſo fu
                  <lb/>
                mo; </s>
                <s xml:id="echoid-s2240" xml:space="preserve">vnde admirationi locus non erit, fi ftellas fixas magis ſcintillare, quam errantes
                  <lb/>
                cernamus. </s>
                <s xml:id="echoid-s2241" xml:space="preserve">Lumen ſtellæ ad oculum noſtrum accedens, perpetuò per diuerfas dia-
                  <lb/>
                phaneitates penetrat, medio continuorum motuum corporum mediorum, vnde
                  <lb/>
                continuò eorum lumen variatur, & hoc in
                  <reg norm="longinquis" type="context">lõginquis</reg>
                magis, quàm in propinquis ſtel
                  <lb/>
                lis apparet, quemadmodum ab exemplo de fumo allato, & etiam ab aliquibus vi-
                  <lb/>
                tris ex ſuperficie non plana, ſed irregulari conſtantibus, quilibet cognoſcere poteft.</s>
              </p>
            </div>
            <div xml:id="echoid-div428" type="section" level="3" n="29">
              <head xml:id="echoid-head299" style="it" xml:space="preserve">Daricontinuum infinitum motum ſuper rectam at que
                <lb/>
              finitam lineam.</head>
              <head xml:id="echoid-head300" xml:space="preserve">CAP. XXIX.</head>
              <p>
                <s xml:id="echoid-s2242" xml:space="preserve">OMnes hactenus ſenſerunt imposfibile eſſe dari per
                  <reg norm="imaginationem" type="context">imaginationẽ</reg>
                motum con-
                  <lb/>
                tinuum &
                  <reg norm="perpetuum" type="context">perpetuũ</reg>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0198-01a" xlink:href="fig-0198-01"/>
                ſuper vnam lineam rectam
                  <lb/>
                finit: </s>
                <s xml:id="echoid-s2243" xml:space="preserve">in quo
                  <reg norm="tantum" type="wordlist/context">tñ</reg>
                decipiuntur.
                  <lb/>
                </s>
                <s xml:id="echoid-s2244" xml:space="preserve">Imaginemur
                  <reg norm="ion" type="context">iõ</reg>
                duas lineas
                  <lb/>
                parallelas
                  <var>.a.b.</var>
                et
                  <var>.t.x.</var>
                  <reg norm="quarum" type="context">quarũ</reg>
                  <lb/>
                  <var>b.a.</var>
                fit
                  <reg norm="infinita" type="context">ĩfinita</reg>
                à qualibet par
                  <lb/>
                te, & in ea imaginemur pun
                  <lb/>
                ctum
                  <var>.a.</var>
                moueri continuò ad
                  <lb/>
                quam voluerimus partem,
                  <lb/>
                & </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>