Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
251
(239)
252
(240)
253
(241)
254
(242)
255
(243)
256
(244)
257
(245)
258
(246)
259
(247)
260
(248)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(246)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div495
"
type
="
section
"
level
="
3
"
n
="
5
">
<
div
xml:id
="
echoid-div495
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
p
>
<
s
xml:id
="
echoid-s3106
"
xml:space
="
preserve
">
<
pb
o
="
246
"
rhead
="
IO. BAPT. BENED.
"
n
="
258
"
file
="
0258
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0258
"/>
præciſe ideſt interuallum inter centrum mundi, & centrum epicycli Martis in huiuſ-
<
lb
/>
modi ſitu.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3107
"
xml:space
="
preserve
">Fingemus igitur eccenticum Martis ſignificatum per
<
var
>.p.c.m.</
var
>
cuius centrum ſit
<
var
>.r.</
var
>
<
lb
/>
& lineam augis
<
var
>.p.r.o.m.</
var
>
in qua
<
reg
norm
="
centrum
"
type
="
context
">centrũ</
reg
>
mundi ſit
<
var
>.o.</
var
>
centrum autem verum epicycli,
<
lb
/>
comprehendatur ab angulo
<
var
>.p.o.c.</
var
>
qui ſit graduum .151. min .30. ſecundum ſuppoſi-
<
lb
/>
tum. </
s
>
<
s
xml:id
="
echoid-s3108
"
xml:space
="
preserve
">Quare in puncto
<
var
>.c.</
var
>
erit centrum epicycli. </
s
>
<
s
xml:id
="
echoid-s3109
"
xml:space
="
preserve
">Imaginemur ergo
<
var
>.c.o.</
var
>
productam à
<
lb
/>
parte
<
var
>.o.</
var
>
quouſque ab
<
var
>.r.</
var
>
centro deferentis veniat linea
<
var
>.r.k.</
var
>
perpendiculariter, faciens
<
lb
/>
angulum rectum in puncto. k & quoniam angulus
<
var
>.r.o.c.</
var
>
datur nobis graduum .151.
<
lb
/>
min .30. ideo cognoſcemus angulum
<
var
>.r.o.k.</
var
>
tanquam reliquum ex duobus rectis, qui
<
lb
/>
erit gra .28. min .30. & ſimiliter angu-
<
lb
/>
<
figure
xlink:label
="
fig-0258-01
"
xlink:href
="
fig-0258-01a
"
number
="
293
">
<
image
file
="
0258-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0258-01
"/>
</
figure
>
lum
<
var
>.o.r.k.</
var
>
tanquam reſiduum vnius
<
lb
/>
recti, qui erit gra .61. min .30. cuius ſi-
<
lb
/>
nus ideſt
<
var
>.o.k.</
var
>
erit partium .8788 1. et
<
var
>.k.
<
lb
/>
r.</
var
>
vt ſinus anguli
<
var
>.r.o.k.</
var
>
partium .47715
<
lb
/>
talium qualium
<
var
>.o.r.</
var
>
eſſet 100000. ſed
<
lb
/>
vt
<
var
>.o.r.</
var
>
eſt .6. latus
<
var
>.o.k.</
var
>
erit .5. & min .16
<
lb
/>
et
<
var
>.r.k.</
var
>
partium .2. min .52. & quia
<
var
>.r.c.</
var
>
<
lb
/>
cſt
<
reg
norm
="
partium
"
type
="
context
">partiũ</
reg
>
60. eiuſmodi, ſi ab eius qua-
<
lb
/>
drato ſubtractum fuerit quadratum ip
<
lb
/>
ſius
<
var
>.r.k.</
var
>
reliquum erit nobis
<
reg
norm
="
quadratum
"
type
="
context
">quadratũ</
reg
>
<
lb
/>
ipſius
<
var
>.k.c.</
var
>
cuius radix, ideſt
<
var
>.k.</
var
>
erit par-
<
lb
/>
tium .59. min .56. à qua
<
var
>.c.k.</
var
>
ſubtrahen-
<
lb
/>
do poſtea
<
var
>.k.o.</
var
>
partium .5. minu .16. re-
<
lb
/>
manebit
<
var
>.o.c.</
var
>
partium .54. min .40. pro
<
lb
/>
diſtantia quæſita.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3110
"
xml:space
="
preserve
">Fingamus poſtea epicyclum
<
var
>.f.n.g.</
var
>
<
lb
/>
in quo argumentum verum graduum
<
num
value
="
149
">.
<
lb
/>
149.</
num
>
minu .39. ſit arcus
<
var
>.f.n.</
var
>
vbi Mars inueniatur in
<
var
>.n.</
var
>
per quem punctum tranſeat li-
<
lb
/>
nea
<
var
>.o.n.</
var
>
veri motus Martis. </
s
>
<
s
xml:id
="
echoid-s3111
"
xml:space
="
preserve
">Deinde inueniamus angulum
<
var
>.c.o.n.</
var
>
æquationis
<
reg
norm
="
argumem
"
type
="
context
">argumẽ</
reg
>
<
lb
/>
ti, modo iam dicto, ideſt ducendo ſinum
<
var
>.n.h.</
var
>
arcus
<
var
>.n.g.</
var
>
qui arcus tanquam reliquus
<
lb
/>
argumenti veri, iam præſuppoſiti, ex dimidio circulo, erit graduum 30. minu .21. &
<
lb
/>
<
var
>n.h.</
var
>
eius ſinus partium .50528. ſinus ſimiliter anguli
<
var
>.n.c.h.</
var
>
et
<
var
>.c.h.</
var
>
tanquam ſinus an-
<
lb
/>
guli
<
var
>.c.n.h.</
var
>
reſtantis ex uno recto grad .59. minu .39. erit partium .86295.
<
reg
norm
="
talium
"
type
="
context
">taliũ</
reg
>
qua-
<
lb
/>
lium
<
var
>.c.n.</
var
>
ſinus totus eſſet partium .100000. ſed vt partium .39. & min .30. ſinus
<
var
>.c.h.</
var
>
<
lb
/>
erit partium .34. min .5. et
<
var
>.n.h.</
var
>
partium .19. mi .57. reliquum poſtea
<
var
>.h.o.</
var
>
ex
<
var
>.o.c.</
var
>
par-
<
lb
/>
tium .20. min .35. quia iam ſupra inuenimus
<
var
>.o.c.</
var
>
eſſe partium eiuſmodi .54. minu .40.
<
lb
/>
vnde
<
var
>.o.n.</
var
>
vt radix quadrata ſummæ duorum
<
var
>.n.h.</
var
>
et
<
var
>.h.o.</
var
>
erit partium .28. minu .41.
<
lb
/>
talium qualium
<
var
>.n.h.</
var
>
inuenta fuit partium .19. min .57. quæ
<
var
>.n.h.</
var
>
erit poſtea partium,
<
lb
/>
69552. talium qualium
<
var
>.n.o.</
var
>
partium .100000. & ſumpta dicta
<
var
>.n.h.</
var
>
vt ſinus dictarum
<
lb
/>
partium, dabit nobis angulum
<
var
>.n.o.h.</
var
>
quæſitum gra .44. min .4. qui per tabulas Alfon
<
lb
/>
ſi inuentus eſt gra .44. min .2. par huic, vt dici poteſt. </
s
>
<
s
xml:id
="
echoid-s3112
"
xml:space
="
preserve
">Quiangulus gra .44. minu .4.
<
lb
/>
collectus cum angulo veri centri iam ſuppoſito graduum .151. minu .20. & cum an-
<
lb
/>
gulo augis eccentrici Martis, ſimiliter ſuppoſitæ grad .135. min .5. dabit nobis ſum-
<
lb
/>
mam veræ diſtantiæ Martis à principio Arietis grad .330. min .29. quod aliud non
<
lb
/>
ſignificat, niſi quod Mars inuenietur in minu .29. primi gradus Piſcium. </
s
>
<
s
xml:id
="
echoid-s3113
"
xml:space
="
preserve
">Et Stofle-
<
lb
/>
rus in ſuis ephemeridibus ponit eum in .22. minuto dicti primi gradus, cuius diffe- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>