Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
311
(299)
312
(300)
313
(301)
314
(302)
315
(303)
316
(304)
317
(305)
318
(306)
319
(307)
320
(308)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(303)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div586
"
type
="
section
"
level
="
3
"
n
="
21
">
<
div
xml:id
="
echoid-div588
"
type
="
letter
"
level
="
4
"
n
="
2
">
<
p
>
<
s
xml:id
="
echoid-s3739
"
xml:space
="
preserve
">
<
pb
o
="
303
"
rhead
="
EPISTOLAE.
"
n
="
315
"
file
="
0315
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0315
"/>
titudo verò minoris, æqualis ſit ſemidiametro minori, hoc eſt medietati
<
var
>.d.c.</
var
>
vnde
<
lb
/>
habebimus proportionem coni maioris ad conum minorem,
<
reg
norm
="
eandem
"
type
="
context
">eãdem</
reg
>
quæ eſt diame
<
lb
/>
tri maioris ad diametrum minorem, quod ex .2. parte .11. duodecimi Eucli. </
s
>
<
s
xml:id
="
echoid-s3740
"
xml:space
="
preserve
">nec non
<
lb
/>
ex .9. eiuſdem manifeſtum eſt, ſed conus minor, eſt quarta pars ſphæroidis prolatæ
<
lb
/>
ex .29. </
s
>
<
s
xml:id
="
echoid-s3741
"
xml:space
="
preserve
">Archimedis in lib. de conoidalibus, & conus maior, eſt etiam quarta pars
<
lb
/>
ſphæræ, ex .32. primi lib. de ſphæra, & cyllindro, </
s
>
<
s
xml:id
="
echoid-s3742
"
xml:space
="
preserve
">quare ex communi ſcientia,
<
reg
norm
="
eadem
"
type
="
context
">eadẽ</
reg
>
<
lb
/>
proportio erit ſphæræ maioris ad ſphæroidem prolatam, quæ
<
var
>.a.b.</
var
>
ad
<
var
>.d.c.</
var
>
ſed pro-
<
lb
/>
portio
<
var
>.a.b.</
var
>
ad
<
var
>.d.c.</
var
>
eſt tertia pars proportionis maioris ſphæræ ad
<
reg
norm
="
minorem
"
type
="
context
">minorẽ</
reg
>
. </
s
>
<
s
xml:id
="
echoid-s3743
"
xml:space
="
preserve
">Conſidere
<
lb
/>
mus
<
reg
norm
="
nunc
"
type
="
context
">nũc</
reg
>
alios duos conos rectos, vnius &
<
reg
norm
="
eiuſdem
"
type
="
context
">eiuſdẽ</
reg
>
baſis,
<
reg
norm
="
cuius
"
type
="
simple
">cuiꝰ</
reg
>
diameter ſit
<
var
>.d.c.</
var
>
ſed altitu
<
lb
/>
do maioris, æqualis ſit ſemidiametroſphęrę maioris, altitudo verò minoris, ſit æqua
<
lb
/>
lis ſemidiametro minoris ſphæræ, vnde ex dictis rationibus habebimus
<
reg
norm
="
proportio- nem
"
type
="
context
">proportio-
<
lb
/>
nẽ</
reg
>
maioris coni ad
<
reg
norm
="
minorem
"
type
="
context
">minorẽ</
reg
>
, vt quæ eſt
<
var
>.o.b.</
var
>
ad
<
var
>.o.d.</
var
>
hoc eſt vt
<
var
>.a.b.</
var
>
ad
<
var
>.d.c.</
var
>
& ex dictis
<
reg
norm
="
pro poſitionibus
"
type
="
simple
">ꝓ
<
lb
/>
poſitionibus</
reg
>
ita ſe habebit ſphæroides oblonga ad ſphęram minorem vt
<
var
>.a.b.</
var
>
ad
<
var
>.d.
<
lb
/>
c.</
var
>
hoc eſt tertia pars proportionis ſphæræ maioris ad minorem. </
s
>
<
s
xml:id
="
echoid-s3744
"
xml:space
="
preserve
">Quare proportio
<
lb
/>
ſphæroidis prolatæ ad oblongam, erit reliqua tertia pars proportionis maioris
<
reg
norm
="
ſphae ræ
"
type
="
simple
">ſphę
<
lb
/>
ræ</
reg
>
ad minorem. </
s
>
<
s
xml:id
="
echoid-s3745
"
xml:space
="
preserve
">Quapropter hæc quatuor corpora continua proportionalia inui-
<
lb
/>
cem erunt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3746
"
xml:space
="
preserve
">Nunc verò quærenda eſt inter
<
var
>.a.b.</
var
>
& ſuas duas tertias partes vna media pro por-
<
lb
/>
tionalis, quæ ſit
<
var
>.K.</
var
>
& ex Archimede, inuentum ſit quadratum ęquale circulo, cuius
<
lb
/>
ſit
<
var
>.K.</
var
>
diameter. </
s
>
<
s
xml:id
="
echoid-s3747
"
xml:space
="
preserve
">Vnde proportio circuli (cuius
<
var
>.a.b.</
var
>
eſt diameter) ad circulum cu-
<
lb
/>
ius
<
var
>.K.</
var
>
eſt diameter, ſeſquialtera erit ex .2. 12. Eucli.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3748
"
xml:space
="
preserve
">Ducatur deinde quadratum lineæ
<
var
>.K.</
var
>
in lineam
<
var
>.a.b.</
var
>
& proueniet nobis cor-
<
lb
/>
pus quoddam, quod æquale erit ſphærę maiori, ex corellario .32. primi de ſphęra &
<
lb
/>
cyllindro, cuius corporis, latus cubus ſit
<
var
>.m</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3749
"
xml:space
="
preserve
">Idem facere oportebit mediante
<
var
>.d.c.</
var
>
minoris ſphærę, cuius corporis cubica ra-
<
lb
/>
dix ſit
<
var
>.n</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3750
"
xml:space
="
preserve
">Nunc verò inter
<
var
>.m.</
var
>
et
<
var
>.n.</
var
>
inueniantur duę medię proportionales
<
var
>.s.t.</
var
>
& ex
<
var
>.s.</
var
>
pro-
<
lb
/>
ducatur cubus, qui ęqualis erit ſphęroidi prolatæ propoſiti, cubus vero
<
var
>.t.</
var
>
æqualis
<
lb
/>
erit ſphęroidi oblongę, cuius axis eſſet
<
var
>.a.b</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3751
"
xml:space
="
preserve
">Si autem ſphęroides oblonga nobis propoſita fuiſſet, eodem methodo ſoluere-
<
lb
/>
tur problema.</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div589
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
head
xml:id
="
echoid-head455
"
style
="
it
"
xml:space
="
preserve
">Quadratum circulis mediantibus deſignare.</
head
>
<
head
xml:id
="
echoid-head456
"
xml:space
="
preserve
">AD EVNDEM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3752
"
xml:space
="
preserve
">MOdus autem conficiendi quadratum ex circulis ſupra datam lineam, vt Do-
<
lb
/>
minum Gaſparem docui, facillimus eſt.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3753
"
xml:space
="
preserve
">Sit enim linea
<
var
>.b.a.</
var
>
46. propoſitionis primi Euclidis,
<
reg
norm
="
poſitoque
"
type
="
simple
">poſitoq́;</
reg
>
pede immobli circi-
<
lb
/>
ni in puncto
<
var
>.a.</
var
>
ſecundum quantitatem lineæ
<
var
>.a.b.</
var
>
propoſitę fiat circulus, ſimiliter cir-
<
lb
/>
ca punctum
<
var
>.b.</
var
>
alius circulus eiuſdem magnitudinis, </
s
>
<
s
xml:id
="
echoid-s3754
"
xml:space
="
preserve
">erecta deinde ſola
<
var
>.a.c.</
var
>
perpendi
<
lb
/>
culari ipſi
<
var
>.a.b.</
var
>
ex puncto
<
var
>.a.</
var
>
ipſa ſecabitur à circunferentia circuli. cuius centrum eſt
<
var
>.
<
lb
/>
a.</
var
>
in puncto
<
var
>.c.</
var
>
vnde
<
var
>.a.c.</
var
>
æqualis erit
<
var
>.a.b.</
var
>
poſito demum pede immobili ipſius circi
<
lb
/>
ni in puncto
<
var
>.c.</
var
>
ſecundum longitudinem ipſius
<
var
>.c.a.</
var
>
fiat alius circulus, qui æqualis erit
<
lb
/>
reliquis duobus circulis cum eorum ſemidiametri æquales ſint, & hic vltimo factus
<
lb
/>
ſecabit circulum, cuius
<
reg
norm
="
centrum
"
type
="
context
">centrũ</
reg
>
eſt
<
var
>.b.</
var
>
in
<
reg
norm
="
puncto
"
type
="
context
">pũcto</
reg
>
<
var
>.d.</
var
>
à quo cum ductæ fuerint
<
var
>.d.c.</
var
>
et
<
var
>.d.b.</
var
>
</
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>