Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
311
(299)
312
(300)
313
(301)
314
(302)
315
(303)
316
(304)
317
(305)
318
(306)
319
(307)
320
(308)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(304)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div586
"
type
="
section
"
level
="
3
"
n
="
21
">
<
div
xml:id
="
echoid-div589
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s3754
"
xml:space
="
preserve
">
<
pb
o
="
304
"
rhead
="
IO. BAPT. BENED.
"
n
="
316
"
file
="
0316
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0316
"/>
rectè habebimus quod volumus. </
s
>
<
s
xml:id
="
echoid-s3755
"
xml:space
="
preserve
">nam omnia latera ſunt inuicem ęqualia ex condi-
<
lb
/>
ti onibus circuli, angulus autem
<
var
>.a.</
var
>
rectus effectus fuit, </
s
>
<
s
xml:id
="
echoid-s3756
"
xml:space
="
preserve
">tunc ſi imaginatione cogita-
<
lb
/>
ta fuerit diameter
<
var
>.b.c.</
var
>
ex .8. primi, concludemus angulum
<
var
>.d.</
var
>
eſſe rectum </
s
>
<
s
xml:id
="
echoid-s3757
"
xml:space
="
preserve
">deinde ex .5
<
lb
/>
et .32. eiuſdem concludemus etiam reliquos angulos rectos eſſe.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3758
"
xml:space
="
preserve
">Circa verò id quod mihi ſcripſiſti de igne perpetuo putans nugas eſſe, quod Ro-
<
lb
/>
mæ inuentæ fuerint lucernę ardentes in ſepulchris antiquorum. </
s
>
<
s
xml:id
="
echoid-s3759
"
xml:space
="
preserve
">Ego quid em mi-
<
lb
/>
nimè puto eas nugas eſſe, propterea quod tales lucernas non vnus tantum aut duo
<
lb
/>
viderint, ſed multi homines fide digniſſimi. </
s
>
<
s
xml:id
="
echoid-s3760
"
xml:space
="
preserve
">Prętera cum aisid nulla ratione poſſe
<
lb
/>
fieri. </
s
>
<
s
xml:id
="
echoid-s3761
"
xml:space
="
preserve
">Reſpondeo quod maxima ratione poſſibile eſſe puto, quam quidem ra-
<
lb
/>
tionem ita eſſe oportet, quod primum lucerna ſit perfectè circuncluſa, vt
<
lb
/>
materia in ea conſtituta nullo modo exire poſſit, </
s
>
<
s
xml:id
="
echoid-s3762
"
xml:space
="
preserve
">deinde quod materia inflamabilis
<
lb
/>
talis ſit, vt excrementum fuliginoſum ex flamma tranſmiſſum, tangendo ſuperfi-
<
lb
/>
ciem deuexam ipſius lucernæ, aptum ſit in
<
reg
norm
="
priſtinum
"
type
="
context
">priſtinũ</
reg
>
<
reg
norm
="
humorem
"
type
="
context
">humorẽ</
reg
>
conge
<
unsure
/>
lari, ſiue transfor-
<
lb
/>
mari, vnde materia prima per tres formas perpetuò tranſibit, hoc eſt per humorem,
<
lb
/>
ſiue oleum tale, vt diximus, per ignem, ſeu flammam, & per vaporem, ſeu exhala-
<
lb
/>
tionem fuliginoſam aptam condenſari, atque in priorem humorem illicò reuerti.</
s
>
</
p
>
</
div
>
</
div
>
<
div
xml:id
="
echoid-div591
"
type
="
section
"
level
="
3
"
n
="
22
">
<
div
xml:id
="
echoid-div591
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
head
xml:id
="
echoid-head457
"
xml:space
="
preserve
">DE DIVISIONE TRIANGVLI SECVNDVM
<
lb
/>
propoſitam proportionem.</
head
>
<
head
xml:id
="
echoid-head458
"
style
="
it
"
xml:space
="
preserve
">Michaeli Angelo Muciaſco.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3763
"
xml:space
="
preserve
">
<
emph
style
="
sc
">QVod</
emph
>
mihi proponis, tale eſt, vt ſcilicet tibi modum ſcribam diuidendi
<
lb
/>
triangulum propoſitum ſecundum datam proportionem à linea tranſeun
<
lb
/>
te per punctum notatum extra triangulum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3764
"
xml:space
="
preserve
">Tr
<
unsure
/>
<
reg
norm
="
iangulum
"
type
="
context
">iangulũ</
reg
>
<
reg
norm
="
igitur
"
type
="
simple
">igit̃</
reg
>
à te mihi propoſitum ſit
<
var
>.n.o.u.</
var
>
conſidero
<
reg
norm
="
primum
"
type
="
context
">primũ</
reg
>
quod ſi
<
lb
/>
quis ipſum diuiſerit in duas partes mediante
<
var
>.e.s.</
var
>
parallela ad
<
var
>.n.u.</
var
>
ea proportione,
<
lb
/>
quam mihi proponis. </
s
>
<
s
xml:id
="
echoid-s3765
"
xml:space
="
preserve
">deinde inuenerit in dicta
<
var
>.e.s.</
var
>
punctum
<
var
>.r.</
var
>
per quod tranſiens
<
lb
/>
alia linea à puncto
<
var
>.p.</
var
>
propoſito, ita quod efficiat duo triangula
<
var
>.m.r.e.</
var
>
et
<
var
>.r.s.x.</
var
>
inui-
<
lb
/>
cem æqualia, problema ſolutum erit.
<
lb
/>
<
figure
xlink:label
="
fig-0316-01
"
xlink:href
="
fig-0316-01a
"
number
="
336
">
<
image
file
="
0316-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0316-01
"/>
</
figure
>
eo quod triangulum
<
var
>.m.o.x.</
var
>
æquale
<
lb
/>
eſſet triangulo
<
var
>.e.o.s.</
var
>
& quadrilate-
<
lb
/>
rum reſiduum
<
var
>.m.n.u.x.</
var
>
etiam ęquale
<
lb
/>
eſſet quadrilatero
<
var
>.e.n.u.s</
var
>
.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3766
"
xml:space
="
preserve
">Sed dum punctum
<
var
>.r.</
var
>
uenarer, alia
<
lb
/>
<
figure
xlink:label
="
fig-0316-02
"
xlink:href
="
fig-0316-02a
"
number
="
337
">
<
image
file
="
0316-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0316-02
"/>
</
figure
>
via mihi in mentem venit, cognoui
<
lb
/>
igitur quod quum propoſitum expe-
<
lb
/>
ditum fuiſſer, hoc eſt,
<
reg
norm
="
quod
"
type
="
simple
">ꝙ</
reg
>
ſi à puncto p.
<
lb
/>
protracta eſſet linea
<
var
>.p.m.</
var
>
quę trian-
<
lb
/>
gulum
<
var
>.n.o.u.</
var
>
in duas partes inuicem
<
lb
/>
ita proportionatas diuiſiſſet, vt ſe ha
<
lb
/>
bet
<
var
>.A.</
var
>
et
<
var
>.B.</
var
>
ita ſe haberet
<
reg
norm
="
productum
"
type
="
context
">productũ</
reg
>
<
lb
/>
<
figure
xlink:label
="
fig-0316-03
"
xlink:href
="
fig-0316-03a
"
number
="
338
">
<
image
file
="
0316-03
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0316-03
"/>
</
figure
>
<
var
>n.o.</
var
>
in
<
var
>.o.u.</
var
>
ad productum
<
var
>.m.o.</
var
>
in
<
var
>.o.
<
lb
/>
x.</
var
>
vt trianguli
<
var
>.n.o.u.</
var
>
ad triangulum
<
lb
/>
<
var
>m.o.x.</
var
>
quod quidem non eſt diffi-
<
lb
/>
cile ſpeculari, ex methodo .24. ſexti, </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>