Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
411
(399)
412
(400)
413
(401)
414
(402)
415
(403)
416
(404)
417
(405)
418
(406)
419
(407)
420
(408)
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(400)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div756
"
type
="
section
"
level
="
3
"
n
="
43
">
<
div
xml:id
="
echoid-div756
"
type
="
letter
"
level
="
4
"
n
="
1
">
<
pb
o
="
400
"
rhead
="
IO. BAPT. BENED.
"
n
="
412
"
file
="
0412
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0412
"/>
<
p
>
<
s
xml:id
="
echoid-s4727
"
xml:space
="
preserve
">Hic
<
reg
norm
="
animaduertendum
"
type
="
context
">animaduertendũ</
reg
>
eſt omnes interpretes falli, qui hoc loco Platonem de omni-
<
lb
/>
bus proportionalitatibus continuis quæ ternario numero (alia enim Arithmetica,
<
lb
/>
alia geometrica, alia harmonica dicitur) continentur, intelligendum eſſe cenſent,
<
lb
/>
quia de numeris, magnitudinibus,
<
reg
norm
="
viribusque
"
type
="
simple
">viribusq́;</
reg
>
, aut ut dici ſolet, virtutibus mentionem
<
lb
/>
fecerit. </
s
>
<
s
xml:id
="
echoid-s4728
"
xml:space
="
preserve
">Plato enim nihil aliud inferre voluit, quam eandem paſſionem (ut ipſe reci-
<
lb
/>
tat) inter medium
<
reg
norm
="
extremaque
"
type
="
simple
">extremaq́;</
reg
>
vnius proportionalitatis continuæ geometricæ, tam
<
lb
/>
in quantitate, quam in qualitate
<
reg
norm
="
reſultaturam
"
type
="
context
">reſultaturã</
reg
>
, cum tres termini eiuſdem eſſent ſpe-
<
lb
/>
ciei, & quia quantitas in duas principes
<
reg
norm
="
primariasque
"
type
="
simple
">primariasq́;</
reg
>
partes, ideſt in continuam, &
<
lb
/>
diſcretam diuiditur, hanc ob cauſam Plato hoc præcipuè ſignificat numerorum ma-
<
lb
/>
<
reg
norm
="
gnitudinisque
"
type
="
simple
">gnitudinisq́;</
reg
>
vocabulis vtens, quibus vniuerſum quantitatis genus complectitur.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4729
"
xml:space
="
preserve
">Cum verò ait vires, uniuerſum qualitatis genus inferre uult. </
s
>
<
s
xml:id
="
echoid-s4730
"
xml:space
="
preserve
">Quia proportio &
<
lb
/>
proportionalitas tam continua quam diſcreta, non ſolum interterminos quanti, ſed
<
lb
/>
inter eos etiam qui quali attribuuntur elucet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4731
"
xml:space
="
preserve
">Sed quod eo loco de harmonica proportionalitate quæ
<
reg
norm
="
cum
"
type
="
context
">cũ</
reg
>
geometrica magis ſim
<
lb
/>
bola eſt quam cum Arithmetica Plato minime intelligat, ex eiuſdem uerbis cum ita
<
lb
/>
ſcribit manifeſtè patet.</
s
>
</
p
>
<
quote
>
<
s
xml:id
="
echoid-s4732
"
xml:space
="
preserve
">Quando enim medium ita ſe habet ad poſtremum ut primum ad medium,
<
reg
norm
="
uiciſ- ſimque
"
type
="
simple
">uiciſ-
<
lb
/>
ſimq́;</
reg
>
ut poſtremum cum medio ita medium cum primo congruit.</
s
>
</
quote
>
<
p
>
<
s
xml:id
="
echoid-s4733
"
xml:space
="
preserve
">Id enim in harmonica proportionalitate non cernitur in qua primus terminus ad
<
lb
/>
poſtremum, & non ad medium, ita ſe habet geometricè ut differentia inter primum
<
lb
/>
& medium ad differentiam inter medium & ultimum.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4734
"
xml:space
="
preserve
">Quod ſi clarum eſt ipſum de harmonica proportionalitate nullo modo intellige-
<
lb
/>
re, quanto minus de Arithmetica, quæ cum geometrica nihil habet commune.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4735
"
xml:space
="
preserve
">Cum uerò Plato ait.</
s
>
</
p
>
<
quote
>
<
s
xml:id
="
echoid-s4736
"
xml:space
="
preserve
">Tunc quod medium eſt & primum fit & poſtremum, poſtremum quoque, & pri-
<
lb
/>
mum media fiunt,
<
reg
norm
="
&c.
"
type
="
unresolved
">&c.</
reg
>
</
s
>
</
quote
>
<
p
>
<
s
xml:id
="
echoid-s4737
"
xml:space
="
preserve
">Nihil aliud oſtendere uult, quam ſimilitudinem quæ inter huiuſmodi medium &
<
lb
/>
extrema intercedit, cum ipſum medium ad poſtremum, quem primus ad ſeipſum,
<
lb
/>
eundem reſpectum habeat, in quo eſt ſimilis primo, & contra ad primum
<
reg
norm
="
terminum
"
type
="
context
">terminũ</
reg
>
,
<
lb
/>
eundem reſpectum, quem poſtremum ad ſeipſum habet, </
s
>
<
s
xml:id
="
echoid-s4738
"
xml:space
="
preserve
">unde hac ratione ultimum
<
lb
/>
repręſentat, uolens Plato inferre de conuenientia quę inter media elementa, & ex-
<
lb
/>
trema intercedit, ut aquæ inter aerem, & terram, cum aqua, ratione ſuæ frigiditatis,
<
lb
/>
terrę, ratione uero ſuæ humiditatis aeri ſimilis euadat. </
s
>
<
s
xml:id
="
echoid-s4739
"
xml:space
="
preserve
">Aer uero qui inter ignem,
<
lb
/>
<
reg
norm
="
aquamque
"
type
="
simple
">aquamq́;</
reg
>
ponitur quod ad caliditatem attinet cum igne, quod uero ad humidita-
<
lb
/>
tem ſpectat cum aqua communicet.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4740
"
xml:space
="
preserve
">Sed quia Plato multis in rebus doctrinam Pythagoricam ſequutus eſt, Pythago-
<
lb
/>
rici aut em omnia numeris metiebantur, & de omnire ſecundum numerorum ratio
<
lb
/>
nem diſſerebant,
<
reg
norm
="
uidensque
"
type
="
simple
">uidensq́;</
reg
>
Plato quod inter duos numeros ſuperficiales,
<
reg
norm
="
inuicemque
"
type
="
simple
">inuicemq́;</
reg
>
<
lb
/>
ſimiles exiſtentes, unum tantum numerum medium in proportionalitate continua
<
lb
/>
geometrica cadere poteſt, ideo ſubiungit.</
s
>
</
p
>
<
quote
>
<
s
xml:id
="
echoid-s4741
"
xml:space
="
preserve
">Quod ſi uniuerſi corpus latitudinem habere debuiſſet, nullam uerò profundita-
<
lb
/>
tem, unum ſanè, tum ad ſeipſum, tum ad extrema uincienda interiectum medium
<
lb
/>
ſuffeciſſet.</
s
>
</
quote
>
<
p
>
<
s
xml:id
="
echoid-s4742
"
xml:space
="
preserve
">Sequitur poſtea ſic.</
s
>
</
p
>
<
quote
>
<
s
xml:id
="
echoid-s4743
"
xml:space
="
preserve
">Sed cum ſoliditatem mundus requireret, ſolida uerò non uno, ſed duobus ſem-
<
lb
/>
per modis copulentur, inter ignem, & terram, Deus, Aerem, Aquamq́ue loca-
<
lb
/>
uit,
<
reg
norm
="
&c.
"
type
="
unresolved
">&c.</
reg
>
</
s
>
</
quote
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>