Benedetti, Giovanni Battista de
,
Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
431
(419)
432
(420)
433
(421)
434
(422)
435
(423)
436
(424)
437
(425)
438
(426)
439
440
<
0 - 9
10 - 19
20 - 29
30 - 39
40 - 49
50 - 59
60 - 69
70 - 79
80 - 89
90 - 99
100 - 109
110 - 119
120 - 129
130 - 139
140 - 149
150 - 159
160 - 169
170 - 179
180 - 189
190 - 199
200 - 209
210 - 219
220 - 229
230 - 239
240 - 249
250 - 259
260 - 269
270 - 279
280 - 289
290 - 299
300 - 309
310 - 319
320 - 329
330 - 339
340 - 349
350 - 359
360 - 369
370 - 379
380 - 389
390 - 399
400 - 409
410 - 419
420 - 429
430 - 439
440 - 445
>
page
|<
<
(420)
of 445
>
>|
<
echo
version
="
1.0
">
<
text
type
="
book
"
xml:lang
="
la
">
<
div
xml:id
="
echoid-div7
"
type
="
body
"
level
="
1
"
n
="
1
">
<
div
xml:id
="
echoid-div477
"
type
="
chapter
"
level
="
2
"
n
="
6
">
<
div
xml:id
="
echoid-div776
"
type
="
section
"
level
="
3
"
n
="
50
">
<
div
xml:id
="
echoid-div778
"
type
="
letter
"
level
="
4
"
n
="
3
">
<
p
>
<
s
xml:id
="
echoid-s5085
"
xml:space
="
preserve
">
<
pb
o
="
420
"
rhead
="
IO. BAPT. BENED.
"
n
="
432
"
file
="
0432
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0432
"/>
à centro circuli, ipſum triangulum circunſcribentis, terminatur, & à baſi, vt in tertio
<
lb
/>
propoſito decimæſeptimæ quartidecimi Eucli. probatur, ex quo ſequitur proportio
<
lb
/>
nem huiuſmodi perpendicularis ad axem Tetraedri, hoc eſt ad
<
var
>.a.c.</
var
>
ſeſquioctauam
<
lb
/>
eſſe in potentia, ex penultima primi Eucli. </
s
>
<
s
xml:id
="
echoid-s5086
"
xml:space
="
preserve
">Sed cum
<
var
>.d.c.</
var
>
tertia pars ſit ipſius
<
var
>.d.a.</
var
>
vt
<
lb
/>
etiam ex .2. propoſito, ſeu corollario decimæſeptimæ .14. lib. diſcurrere licet, cum ex
<
lb
/>
dicto corollario
<
var
>.d.c.</
var
>
ſit ſexta pars ipſius
<
var
>.a.b</
var
>
. </
s
>
<
s
xml:id
="
echoid-s5087
"
xml:space
="
preserve
">Quare
<
var
>.d.c.</
var
>
quarta pars erit ipſius
<
var
>.a.c.</
var
>
vn
<
lb
/>
de
<
var
>.a.c.</
var
>
ſeſquitertia erit ipſi
<
var
>.a.d.</
var
>
in longitudine,
<
reg
norm
="
ideoque
"
type
="
simple
">ideoq́;</
reg
>
quadratum ipſius
<
var
>.a.d.</
var
>
ad qua-
<
lb
/>
dratum ipſius
<
var
>.a.c.</
var
>
erit vt .9. ad .16: </
s
>
<
s
xml:id
="
echoid-s5088
"
xml:space
="
preserve
">& ita duplum quadrati ipſius
<
var
>.a.d.</
var
>
hoc eſt quadra-
<
lb
/>
tum ipſius
<
var
>.b.f.</
var
>
ad quadratum ipſius
<
var
>.a.c.</
var
>
erit, vt .18. ad .16. hoc eſt ſeſquioctauum, er-
<
lb
/>
go
<
var
>.b.f.</
var
>
æqualis erit dictæ perpendiculari, ex .9. quinti.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5089
"
xml:space
="
preserve
">Cubus poſtea ipſius
<
var
>.b.e.</
var
>
erit partium .1539838576570176.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5090
"
xml:space
="
preserve
">Pro Octaedro deinde, accipies productum diametri in ſemidiametrum, quod
<
lb
/>
productum, æquale erit quadrato diuidenti per æqualia Octaedron, hocigitur pro-
<
lb
/>
ductum, multiplicando per .100000. ſemidiametrum ſphæræ, tibi dabit columnam
<
lb
/>
quadrilateram cuius tertia pars, erit partium .666666666666666. cuius duplum
<
lb
/>
erit ipſum Octaedron partium .1333333333333.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5091
"
xml:space
="
preserve
">Pro Icoſaedro autem, oportet prius quantitatem perpendicularis inuenire, quæ
<
lb
/>
perpendicularis, per æqualia diuidit baſim ipſius Icoſaedri, quæ vt radix quadrata
<
lb
/>
trium quartarum quadrati lateris ipſius baſis, erit partium .91055. talium, qualium
<
lb
/>
dictum latus erit partium .105142. cuius medietas eſt .52571. quæ medietas ſi mul-
<
lb
/>
tiplicata fuerit cum dicta perpendiculari, dabit totam baſim ſuperficialem, hoc eſt
<
lb
/>
ſuperficiem vnius trianguli æquilateris partium ſuperficialium .4786852405. quo
<
lb
/>
facto, accipe quadratum duarum tertiarum ipſius, hic ſupra dictæ perpendicularis,
<
lb
/>
<
reg
norm
="
ipſumque
"
type
="
simple
">ipſumq́;</
reg
>
deme ex quadrato ſemidiametri ſphæræ, hoc eſt, ex quadrato
<
reg
norm
="
ipſius
"
type
="
simple
">ipſiꝰ</
reg
>
.100000
<
lb
/>
radix poſtea quadrata reſidui, erit partium .79468. & hæc erit perpendicularis à cen
<
lb
/>
tro ſphærę ad vnam baſim ipſius Icoſaedri, quam volueris, quam perpendicularem
<
lb
/>
ſi multiplicaueris cum quantitate ſuperficiali, hic ſuperius reperta, vnius baſis, con-
<
lb
/>
ſequeris columnam trilateram partium .380401586920540. cuius tertia pars, erit
<
lb
/>
partium .126800528973513. pro vna ex .20. </
s
>
<
s
xml:id
="
echoid-s5092
"
xml:space
="
preserve
">Pyramidibus ipſum corpus compo-
<
lb
/>
nentibus. </
s
>
<
s
xml:id
="
echoid-s5093
"
xml:space
="
preserve
">Breuius tamen hoc efficiens, ſi multiplicaueris baſim dictam, cum tertia
<
lb
/>
parte ipſius perpendicularis, hanc poſtea pyramidem multiplicando per .20. habebis
<
lb
/>
totam corpulentiam ipſius Icoſaedri partium .2536010579470260.</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5094
"
xml:space
="
preserve
">Pro Duodecaedro demum, accipe ſinum gra .36. qui
<
reg
norm
="
gradus
"
type
="
simple
">gradꝰ</
reg
>
ſunt pro dimidio quin
<
lb
/>
tæ partis totius gyri circularis,
<
reg
norm
="
qui
"
type
="
simple
">ꝗ</
reg
>
<
reg
norm
="
quidem
"
type
="
context
">quidẽ</
reg
>
ſinus, erit partium .58778. cuius quadratum
<
lb
/>
ſi
<
reg
norm
="
dem
"
type
="
context
">dẽ</
reg
>
pſeris ex quadrato
<
reg
norm
="
ipſius
"
type
="
simple
">ipſiꝰ</
reg
>
.100000. ſemidiametri circuli
<
reg
norm
="
circunſcribentis
"
type
="
context
">circũſcribentis</
reg
>
<
reg
norm
="
aliquem
"
type
="
context
">aliquẽ</
reg
>
<
reg
norm
="
pen- tago
"
type
="
context
">pẽ-
<
lb
/>
tago</
reg
>
num æquilaterum, & æquiangulum, </
s
>
<
s
xml:id
="
echoid-s5095
"
xml:space
="
preserve
">tunc radix reſidui, erit perpendicularis du-
<
lb
/>
cta à centro dicti circuli ad medium vnius lateris ipſius pentagoni, quæ perp endicu
<
lb
/>
laris, erit partium .80902. talium qualium medietas lateris dicti fuerit .58778.
<
lb
/>
Nunc verò dicendo ſi .58778. dat .80902. quid nobis dabit .35684? </
s
>
<
s
xml:id
="
echoid-s5096
"
xml:space
="
preserve
">medietas lateris
<
lb
/>
ipſius Duodecaedri, vnde da bit .49116. pro perpendiculari, à centro ipſius penta-
<
lb
/>
goni, ad latus ipſius Duodecaedri, quæ multiplicata cum me dietate ſupradicta ip-
<
lb
/>
ſius lat eris, hoc eſt cum .35684. producet vnum ex quinque triangulis componenti-
<
lb
/>
bus vn um pentagonum, ſeu vnam baſim ipſius Duodecaedri, quod quidem triangu
<
lb
/>
lum, erit partium .1752655344. ſu perficialium, quas ſi per quinque multiplicaueris
<
lb
/>
habeb is vnam baſim pentagonam dicti corporis partium .8763276720. </
s
>
<
s
xml:id
="
echoid-s5097
"
xml:space
="
preserve
">Dicendum
<
lb
/>
poſtea eſt, ſi ad .80901. conuenit ſemidiameter circularis partium .100000. quid
<
reg
norm
="
con
"
type
="
context
">cõ</
reg
>
<
lb
/>
ueniet partibus .49116. dabit .60711. pro tali ſemidiametro circulari, cuius quadra- </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>