Tartaglia, Niccolò
,
La nova scientia de Nicolo Tartaglia : con una gionta al terzo libro
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 82
>
Scan
Original
31
12
32
33
13
34
35
14
36
37
15
38
39
16
40
41
17
42
43
18
44
45
46
47
20
48
49
21
50
51
22
52
53
23
54
55
24
56
57
25
58
59
26
60
<
1 - 30
31 - 60
61 - 82
>
page
|<
<
of 82
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
ita
"
type
="
free
">
<
div
xml:id
="
echoid-div63
"
type
="
section
"
level
="
1
"
n
="
56
">
<
pb
file
="
00012v
"
n
="
32
"
rhead
="
LIBRO
"/>
<
figure
number
="
17
">
<
variables
xml:id
="
echoid-variables11
"
xml:space
="
preserve
">B
<
lb
/>
A C
<
lb
/>
D</
variables
>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div64
"
type
="
section
"
level
="
1
"
n
="
57
">
<
head
xml:id
="
head64
"
xml:space
="
preserve
"
style
="
it
">Propoſitione. II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
s874
"
xml:space
="
preserve
">Se dal centro dun cerchio ſar an protratte due linee fina
<
lb
/>
alla circonferentia, tal proportione hauer a tutta la circon
<
lb
/>
ferentia del cerchio ‡ líarco che interchiuden le dette due
<
lb
/>
linee qual hauera quatro angoli retti a langolo contenuto
<
lb
/>
dalle dette due linee ſopra il centro.</
s
>
<
s
xml:id
="
s875
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
s876
"
xml:space
="
preserve
">SIa il cerchio.</
s
>
<
s
xml:id
="
s877
"
xml:space
="
preserve
">a b c.</
s
>
<
s
xml:id
="
s878
"
xml:space
="
preserve
">il centro dil quale ſia il ponto.</
s
>
<
s
xml:id
="
s879
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s880
"
xml:space
="
preserve
"> & dal centro.</
s
>
<
s
xml:id
="
s881
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s882
"
xml:space
="
preserve
">
<
lb
/>
ſian protratte le due linee.</
s
>
<
s
xml:id
="
s883
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s884
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s885
"
xml:space
="
preserve
">&.</
s
>
<
s
xml:id
="
s886
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s887
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s888
"
xml:space
="
preserve
">Dico che tal proportione ha tut-
<
lb
/>
ta la circonferentia del detto cerchio a larcho.</
s
>
<
s
xml:id
="
s889
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s890
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s891
"
xml:space
="
preserve
"> che interchiude le
<
lb
/>
dette due linee qual ha quattro angoli rctti, ‡ langolo.</
s
>
<
s
xml:id
="
s892
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s893
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s894
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s895
"
xml:space
="
preserve
"> Perche
<
lb
/>
protraro vna delle dette linee fina alla circonferentia & ſia.</
s
>
<
s
xml:id
="
s896
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s897
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s898
"
xml:space
="
preserve
"> fina in.</
s
>
<
s
xml:id
="
s899
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s900
"
xml:space
="
preserve
">
<
lb
/>
onde(per la vltima dil ſeſto de Euclide)la proportione de líarco.</
s
>
<
s
xml:id
="
s901
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s902
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s903
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s904
"
xml:space
="
preserve
">líar-
<
lb
/>
co.</
s
>
<
s
xml:id
="
s905
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s906
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s907
"
xml:space
="
preserve
">è ſi come líangolo.</
s
>
<
s
xml:id
="
s908
"
xml:space
="
preserve
">e d b a.</
s
>
<
s
xml:id
="
s909
"
xml:space
="
preserve
">líangolo.</
s
>
<
s
xml:id
="
s910
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s911
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s912
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s913
"
xml:space
="
preserve
">& (per la.</
s
>
<
s
xml:id
="
s914
"
xml:space
="
preserve
">18.</
s
>
<
s
xml:id
="
s915
"
xml:space
="
preserve
"> del quinto de
<
lb
/>
Euclide)il congionto delli detti dui archi.</
s
>
<
s
xml:id
="
s916
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s917
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s918
"
xml:space
="
preserve
">&.</
s
>
<
s
xml:id
="
s919
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s920
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s921
"
xml:space
="
preserve
"> (cioe tutto líarco.</
s
>
<
s
xml:id
="
s922
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s923
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s924
"
xml:space
="
preserve
">
<
lb
/>
a.</
s
>
<
s
xml:id
="
s925
"
xml:space
="
preserve
">)a líarco.</
s
>
<
s
xml:id
="
s926
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s927
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s928
"
xml:space
="
preserve
"> ſara ſi come il congionto delli dui angoli.</
s
>
<
s
xml:id
="
s929
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s930
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s931
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s932
"
xml:space
="
preserve
"> &.</
s
>
<
s
xml:id
="
s933
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s934
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s935
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s936
"
xml:space
="
preserve
"> a
<
lb
/>
líangolo.</
s
>
<
s
xml:id
="
s937
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s938
"
xml:space
="
preserve
">d.</
s
>
<
s
xml:id
="
s939
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s940
"
xml:space
="
preserve
">& perche líarco.</
s
>
<
s
xml:id
="
s941
"
xml:space
="
preserve
">e.</
s
>
<
s
xml:id
="
s942
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s943
"
xml:space
="
preserve
">a.</
s
>
<
s
xml:id
="
s944
"
xml:space
="
preserve
">è la mitade della circonferentia di tut
<
lb
/>
to il cerchio, & il congiunto delli dui angoli.</
s
>
<
s
xml:id
="
s945
"
xml:space
="
preserve
"> e d.</
s
>
<
s
xml:id
="
s946
"
xml:space
="
preserve
">b.</
s
>
<
s
xml:id
="
s947
"
xml:space
="
preserve
">&.</
s
>
<
s
xml:id
="
s948
"
xml:space
="
preserve
">b d a.</
s
>
<
s
xml:id
="
s949
"
xml:space
="
preserve
">(per la decima
<
lb
/>
tertia del primo de Euclide)è eguale a dui angoli retti ſeguita adoque che
<
lb
/>
ſi come è la mita della circonſerẽtia del detto cerchio al detto arco.</
s
>
<
s
xml:id
="
s950
"
xml:space
="
preserve
">b a.</
s
>
<
s
xml:id
="
s951
"
xml:space
="
preserve
">coſi
<
lb
/>
ſara dui angoli rettia líangolo.</
s
>
<
s
xml:id
="
s952
"
xml:space
="
preserve
">b d a.</
s
>
<
s
xml:id
="
s953
"
xml:space
="
preserve
"> & perche tutta la circonferentia dil
<
lb
/>
cerchio alla mitade di quella (cioe alíarco.</
s
>
<
s
xml:id
="
s954
"
xml:space
="
preserve
">e b a.</
s
>
<
s
xml:id
="
s955
"
xml:space
="
preserve
">) è ſi come quatro angoli
<
lb
/>
retti, a due angoli retti, donque (per la uiceſimaſeconda del quinto de Eucli
<
lb
/>
de) ſi come tutta la circonferentia del detto cerchio a líarco.</
s
>
<
s
xml:id
="
s956
"
xml:space
="
preserve
">a b.</
s
>
<
s
xml:id
="
s957
"
xml:space
="
preserve
">coſi ſaran
<
lb
/>
quatro angoli retti a líangolo.</
s
>
<
s
xml:id
="
s958
"
xml:space
="
preserve
"> b d a.</
s
>
<
s
xml:id
="
s959
"
xml:space
="
preserve
">che è il propoſito.</
s
>
<
s
xml:id
="
s960
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
s961
"
xml:space
="
preserve
">Propoſitione</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>