Tartaglia, Niccolò
,
La nova scientia de Nicolo Tartaglia : con una gionta al terzo libro
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 37
[out of range]
>
<
1 - 30
31 - 37
[out of range]
>
page
|<
<
of 82
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
ita
"
type
="
free
">
<
div
xml:id
="
echoid-div67
"
type
="
section
"
level
="
1
"
n
="
59
">
<
pb
file
="
00014v
"
n
="
36
"
rhead
="
LIBRO
"/>
</
div
>
<
div
xml:id
="
echoid-div68
"
type
="
section
"
level
="
1
"
n
="
60
">
<
head
xml:id
="
head67
"
xml:space
="
preserve
"
style
="
it
">Propoſitione. V.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
s1073
"
xml:space
="
preserve
">Se il tranſito, ouer moto uiolente díun corpo egualmẽte gra
<
lb
/>
ue ſara elleuato ſopra a líorizite, laparte curua di quello
<
lb
/>
ſara maggiore della quarta parte della circonferẽtia del
<
lb
/>
cerchio donde deriua, & quanto piu ſara eleuato, tãto piu
<
lb
/>
ſara maggiore di la quarta parte de detta circonferentia,
<
lb
/>
& tamen mai potra eſſer la mitade di eſſa circonferẽtia.</
s
>
<
s
xml:id
="
s1074
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
s1075
"
xml:space
="
preserve
">S
<
emph
style
="
sc
">I</
emph
>
a il ſemidiametro del pian dellíorizonte la linea.</
s
>
<
s
xml:id
="
s1076
"
xml:space
="
preserve
"> a b.</
s
>
<
s
xml:id
="
s1077
"
xml:space
="
preserve
"> & la perpendico-
<
lb
/>
lar de líorizonte la linea.</
s
>
<
s
xml:id
="
s1078
"
xml:space
="
preserve
"> c a d & il tranſito uiolente díun corpo egual-
<
lb
/>
mente graue la linea.</
s
>
<
s
xml:id
="
s1079
"
xml:space
="
preserve
"> a e f.</
s
>
<
s
xml:id
="
s1080
"
xml:space
="
preserve
"> la parte curua dilquale ſia líarco.</
s
>
<
s
xml:id
="
s1081
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1082
"
xml:space
="
preserve
"> & la par-
<
lb
/>
te.</
s
>
<
s
xml:id
="
s1083
"
xml:space
="
preserve
"> f g.</
s
>
<
s
xml:id
="
s1084
"
xml:space
="
preserve
"> ſia il tranſito fatto di moto naturale.</
s
>
<
s
xml:id
="
s1085
"
xml:space
="
preserve
"> Dico líarco.</
s
>
<
s
xml:id
="
s1086
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1087
"
xml:space
="
preserve
"> eſſer maggiore
<
lb
/>
della quarta parte della circonferentia del cerchio donde deriua.</
s
>
<
s
xml:id
="
s1088
"
xml:space
="
preserve
"> Perche
<
lb
/>
produro il tranſito naturale.</
s
>
<
s
xml:id
="
s1089
"
xml:space
="
preserve
"> f g.</
s
>
<
s
xml:id
="
s1090
"
xml:space
="
preserve
"> & la parte retta, a e.</
s
>
<
s
xml:id
="
s1091
"
xml:space
="
preserve
"> tanto che concorra-
<
lb
/>
no inſieme in ponto.</
s
>
<
s
xml:id
="
s1092
"
xml:space
="
preserve
"> h.</
s
>
<
s
xml:id
="
s1093
"
xml:space
="
preserve
"> & produro.</
s
>
<
s
xml:id
="
s1094
"
xml:space
="
preserve
"> f h.</
s
>
<
s
xml:id
="
s1095
"
xml:space
="
preserve
"> fin in.</
s
>
<
s
xml:id
="
s1096
"
xml:space
="
preserve
"> k.</
s
>
<
s
xml:id
="
s1097
"
xml:space
="
preserve
"> coſtituendo líangolo eſteriore
<
lb
/>
<
figure
xlink:label
="
fig-00014v-01
"
xlink:href
="
fig-00014v-01a
"
number
="
21
">
<
variables
xml:id
="
echoid-variables15
"
xml:space
="
preserve
">K
<
lb
/>
H
<
lb
/>
G
<
lb
/>
E
<
lb
/>
A F B
<
lb
/>
D G</
variables
>
</
figure
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>