Tartaglia, Niccolò
,
La nova scientia de Nicolo Tartaglia : con una gionta al terzo libro
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 37
[out of range]
>
<
1 - 30
31 - 37
[out of range]
>
page
|<
<
of 82
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
ita
"
type
="
free
">
<
div
xml:id
="
echoid-div70
"
type
="
section
"
level
="
1
"
n
="
61
">
<
p
style
="
it
">
<
s
xml:id
="
s1156
"
xml:space
="
preserve
">
<
pb
file
="
00015v
"
n
="
38
"
rhead
="
LIBRO
"/>
<
figure
xlink:label
="
fig-00015v-01
"
xlink:href
="
fig-00015v-01a
"
number
="
22
">
<
variables
xml:id
="
echoid-variables16
"
xml:space
="
preserve
">C
<
lb
/>
A B
<
lb
/>
K
<
lb
/>
B H
<
lb
/>
E
<
lb
/>
D G</
variables
>
</
figure
>
le.</
s
>
<
s
xml:id
="
s1157
"
xml:space
="
preserve
"> f g.</
s
>
<
s
xml:id
="
s1158
"
xml:space
="
preserve
"> & la parte retta.</
s
>
<
s
xml:id
="
s1159
"
xml:space
="
preserve
"> a c.</
s
>
<
s
xml:id
="
s1160
"
xml:space
="
preserve
"> tanto che concorrano inſieme in ponto.</
s
>
<
s
xml:id
="
s1161
"
xml:space
="
preserve
"> b.</
s
>
<
s
xml:id
="
s1162
"
xml:space
="
preserve
"> & pre
<
lb
/>
duro.</
s
>
<
s
xml:id
="
s1163
"
xml:space
="
preserve
"> ſ h.</
s
>
<
s
xml:id
="
s1164
"
xml:space
="
preserve
"> fin in.</
s
>
<
s
xml:id
="
s1165
"
xml:space
="
preserve
"> k.</
s
>
<
s
xml:id
="
s1166
"
xml:space
="
preserve
">conſtituendo líangolo esteriore.</
s
>
<
s
xml:id
="
s1167
"
xml:space
="
preserve
"> e h k.</
s
>
<
s
xml:id
="
s1168
"
xml:space
="
preserve
"> et ꝑche líangolo.</
s
>
<
s
xml:id
="
s1169
"
xml:space
="
preserve
"> f h e.</
s
>
<
s
xml:id
="
s1170
"
xml:space
="
preserve
">
<
lb
/>
È eguale (ꝑ la.</
s
>
<
s
xml:id
="
s1171
"
xml:space
="
preserve
"> 1.</
s
>
<
s
xml:id
="
s1172
"
xml:space
="
preserve
"> parte della.</
s
>
<
s
xml:id
="
s1173
"
xml:space
="
preserve
"> 29.</
s
>
<
s
xml:id
="
s1174
"
xml:space
="
preserve
"> del.</
s
>
<
s
xml:id
="
s1175
"
xml:space
="
preserve
"> 1.</
s
>
<
s
xml:id
="
s1176
"
xml:space
="
preserve
"> de Euclide) a líangolo.</
s
>
<
s
xml:id
="
s1177
"
xml:space
="
preserve
"> e a c.</
s
>
<
s
xml:id
="
s1178
"
xml:space
="
preserve
"> & líango
<
lb
/>
lo.</
s
>
<
s
xml:id
="
s1179
"
xml:space
="
preserve
"> e a c.</
s
>
<
s
xml:id
="
s1180
"
xml:space
="
preserve
"> (per la ultima conceptione del primo de Euclide) è maggiore díun
<
lb
/>
angolo retto (cioe de líangolo.</
s
>
<
s
xml:id
="
s1181
"
xml:space
="
preserve
"> b a c.</
s
>
<
s
xml:id
="
s1182
"
xml:space
="
preserve
"> ſua parte) adonque líangolo.</
s
>
<
s
xml:id
="
s1183
"
xml:space
="
preserve
"> e h f.</
s
>
<
s
xml:id
="
s1184
"
xml:space
="
preserve
"> ſara
<
lb
/>
maggiore díun angolo retto onde líangolo.</
s
>
<
s
xml:id
="
s1185
"
xml:space
="
preserve
"> e h k.</
s
>
<
s
xml:id
="
s1186
"
xml:space
="
preserve
"> eſteriore (per la decimater-
<
lb
/>
za del primo de Euclide) ſara minore díun angolo retto, & (ꝑ la ſecida par
<
lb
/>
te della ottaua del quinto di Euclide) quatro angoli retti hauerãno a q̃llo
<
lb
/>
maggiore proportione che quadrupla, et ſimilmẽte la circiferẽtia del cer-
<
lb
/>
chio dide deriua líarco.</
s
>
<
s
xml:id
="
s1187
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1188
"
xml:space
="
preserve
"> al detto arco.</
s
>
<
s
xml:id
="
s1189
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1190
"
xml:space
="
preserve
"> hauera maggior ꝓportione che
<
lb
/>
quadrupla (ꝑ la terza ꝓpoſitione di q̃cto) & (ꝑ la ſecida ꝑte della decima
<
lb
/>
del quinto de Euelide) líarco.</
s
>
<
s
xml:id
="
s1191
"
xml:space
="
preserve
"> e f ſara minore della quarta ꝑte della circife-
<
lb
/>
rẽtia del cerchio dide deriua che è il.</
s
>
<
s
xml:id
="
s1192
"
xml:space
="
preserve
"> 1.</
s
>
<
s
xml:id
="
s1193
"
xml:space
="
preserve
"> ꝓpoſito.</
s
>
<
s
xml:id
="
s1194
"
xml:space
="
preserve
"> Et ꝑche quãto piu ſe ãdara
<
lb
/>
arbaßãdo ſotto a líorizite tãto piu la linea.</
s
>
<
s
xml:id
="
s1195
"
xml:space
="
preserve
"> e a.</
s
>
<
s
xml:id
="
s1196
"
xml:space
="
preserve
"> maggior angolo ãdara cau
<
lb
/>
ſando ci la linea.</
s
>
<
s
xml:id
="
s1197
"
xml:space
="
preserve
"> c a.</
s
>
<
s
xml:id
="
s1198
"
xml:space
="
preserve
"> et ciſequẽtemẽte la linea.</
s
>
<
s
xml:id
="
s1199
"
xml:space
="
preserve
"> f h.</
s
>
<
s
xml:id
="
s1200
"
xml:space
="
preserve
"> ci la linea.</
s
>
<
s
xml:id
="
s1201
"
xml:space
="
preserve
"> e h.</
s
>
<
s
xml:id
="
s1202
"
xml:space
="
preserve
"> et citinua
<
lb
/>
mẽte líãgolo.</
s
>
<
s
xml:id
="
s1203
"
xml:space
="
preserve
"> e h k.</
s
>
<
s
xml:id
="
s1204
"
xml:space
="
preserve
"> eſteriore ſe ãdara ſminuẽdo, et la ꝓportiie de.</
s
>
<
s
xml:id
="
s1205
"
xml:space
="
preserve
"> 4.</
s
>
<
s
xml:id
="
s1206
"
xml:space
="
preserve
"> angoli
<
lb
/>
retti a q̃llo.</
s
>
<
s
xml:id
="
s1207
"
xml:space
="
preserve
"> augumẽtãdo piu di quadrupla, et ſimilmente la ꝓportione della
<
lb
/>
della circiferẽtia del cerchio díide deriua líarco.</
s
>
<
s
xml:id
="
s1208
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1209
"
xml:space
="
preserve
"> al detto arco.</
s
>
<
s
xml:id
="
s1210
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1211
"
xml:space
="
preserve
"> ſi an-
<
lb
/>
dara augumentando piu di quadrupla, per ilche il detto arco.</
s
>
<
s
xml:id
="
s1212
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1213
"
xml:space
="
preserve
"> (per la
<
lb
/>
detta ſeconda parte della decima del quinto de Euclide) andara continua-
<
lb
/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>