Tartaglia, Niccolò
,
La nova scientia de Nicolo Tartaglia : con una gionta al terzo libro
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
page
|<
<
(16)
of 82
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
ita
"
type
="
free
">
<
div
xml:id
="
echoid-div70
"
type
="
section
"
level
="
1
"
n
="
61
">
<
p
style
="
it
">
<
s
xml:id
="
s1213
"
xml:space
="
preserve
">
<
pb
o
="
16
"
file
="
00016r
"
n
="
39
"
rhead
="
PRIMO.
"/>
mente ſminuendo in parte minore díun quarto della circonferentia del cer
<
lb
/>
chio díonde deriuara, che p̃ il ſecondo propoſito.</
s
>
<
s
xml:id
="
s1214
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div72
"
type
="
section
"
level
="
1
"
n
="
62
">
<
head
xml:id
="
head69
"
xml:space
="
preserve
"
style
="
it
">Propoſitione. VII.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
s1215
"
xml:space
="
preserve
">T
<
emph
style
="
sc
">V</
emph
>
tti li tranſiti, ouer moti uiolenti de corpi egualmente
<
lb
/>
graui, ſi grandi come picoli egualmente eleuati ſopra
<
lb
/>
alíorizonte, ouer egualmente obliqui, ouer ſiano per il pian
<
lb
/>
de líorizonte ſono fra lor ſimili, & conſequentemente pro-
<
lb
/>
portionali, & ſimilmente le diſtantie loro.</
s
>
<
s
xml:id
="
s1216
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
s1217
"
xml:space
="
preserve
">S
<
emph
style
="
sc
">I</
emph
>
a il ſemidiametro del pian de líorizite la linea.</
s
>
<
s
xml:id
="
s1218
"
xml:space
="
preserve
"> a b.</
s
>
<
s
xml:id
="
s1219
"
xml:space
="
preserve
"> et la ꝑpẽdicolare de
<
lb
/>
líorizite la linea.</
s
>
<
s
xml:id
="
s1220
"
xml:space
="
preserve
"> c a d.</
s
>
<
s
xml:id
="
s1221
"
xml:space
="
preserve
"> et li trãſiti di dui diuerſi corpi egualmẽte graui
<
lb
/>
egualmẽte eleuati ſopra a líorizite, le due linee.</
s
>
<
s
xml:id
="
s1222
"
xml:space
="
preserve
"> a e d g.</
s
>
<
s
xml:id
="
s1223
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1224
"
xml:space
="
preserve
"> a h i k.</
s
>
<
s
xml:id
="
s1225
"
xml:space
="
preserve
"> di quali le
<
lb
/>
due parti.</
s
>
<
s
xml:id
="
s1226
"
xml:space
="
preserve
"> a e f.</
s
>
<
s
xml:id
="
s1227
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1228
"
xml:space
="
preserve
"> a h i.</
s
>
<
s
xml:id
="
s1229
"
xml:space
="
preserve
"> ſian li trãſiti fatti di moto uiolẽte, et le due parti.</
s
>
<
s
xml:id
="
s1230
"
xml:space
="
preserve
"> f g.</
s
>
<
s
xml:id
="
s1231
"
xml:space
="
preserve
">
<
lb
/>
et.</
s
>
<
s
xml:id
="
s1232
"
xml:space
="
preserve
"> i k.</
s
>
<
s
xml:id
="
s1233
"
xml:space
="
preserve
"> ſian li trãſiti fatti de moto naturale, et le due parti.</
s
>
<
s
xml:id
="
s1234
"
xml:space
="
preserve
"> a e.</
s
>
<
s
xml:id
="
s1235
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1236
"
xml:space
="
preserve
"> a h.</
s
>
<
s
xml:id
="
s1237
"
xml:space
="
preserve
"> ſiano
<
lb
/>
le lor parti rette, lequal parti rette (ꝑ eſſer quegli egualmẽte eleuati) for-
<
lb
/>
marono ?</
s
>
<
s
xml:id
="
s1238
"
xml:space
="
preserve
">ſieme una ſol rettitudine, cioe una ſol linea, laq̃l ſara la linea.</
s
>
<
s
xml:id
="
s1239
"
xml:space
="
preserve
"> a e h.</
s
>
<
s
xml:id
="
s1240
"
xml:space
="
preserve
">
<
lb
/>
et dal pito.</
s
>
<
s
xml:id
="
s1241
"
xml:space
="
preserve
"> a.</
s
>
<
s
xml:id
="
s1242
"
xml:space
="
preserve
"> ſia dutta la linea.</
s
>
<
s
xml:id
="
s1243
"
xml:space
="
preserve
"> a f.</
s
>
<
s
xml:id
="
s1244
"
xml:space
="
preserve
"> et q̃lla ꝓtratta et citinuata direttamen
<
lb
/>
te de neceßita ãdara ꝑ il pito.</
s
>
<
s
xml:id
="
s1245
"
xml:space
="
preserve
"> i.</
s
>
<
s
xml:id
="
s1246
"
xml:space
="
preserve
"> ꝑche quãdo le parti rette de trãſiti, ouer mo
<
lb
/>
ti uiolẽti ſi cipigano inſieme ancora le loro diſtãtie ſe ciponerãno inſieme
<
lb
/>
(aliter ſeg iria inconueniente aſſai) hor.</
s
>
<
s
xml:id
="
s1247
"
xml:space
="
preserve
"> Dico che il trãſito.</
s
>
<
s
xml:id
="
s1248
"
xml:space
="
preserve
"> a e f.</
s
>
<
s
xml:id
="
s1249
"
xml:space
="
preserve
"> (fatto di
<
lb
/>
moto uiolẽte) è ſimile al trãſito.</
s
>
<
s
xml:id
="
s1250
"
xml:space
="
preserve
"> a e h i.</
s
>
<
s
xml:id
="
s1251
"
xml:space
="
preserve
"> (pur fatto di moto uiolẽte) et conſe-
<
lb
/>
quẽtemẽte ꝓportionale, et ſimelmẽte la diſtãtia.</
s
>
<
s
xml:id
="
s1252
"
xml:space
="
preserve
"> a f.</
s
>
<
s
xml:id
="
s1253
"
xml:space
="
preserve
"> alla diſtãtia.</
s
>
<
s
xml:id
="
s1254
"
xml:space
="
preserve
"> a i.</
s
>
<
s
xml:id
="
s1255
"
xml:space
="
preserve
"> Perche
<
lb
/>
ꝓduro li lor trãſiti naturali, et la lor com?</
s
>
<
s
xml:id
="
s1256
"
xml:space
="
preserve
">a ꝑte retta.</
s
>
<
s
xml:id
="
s1257
"
xml:space
="
preserve
"> a e h.</
s
>
<
s
xml:id
="
s1258
"
xml:space
="
preserve
"> fin a tãto che ci
<
lb
/>
corrano inſieme in li dui piti.</
s
>
<
s
xml:id
="
s1259
"
xml:space
="
preserve
"> l m et ꝓduro li detti trãſiti naturali fin in.</
s
>
<
s
xml:id
="
s1260
"
xml:space
="
preserve
"> n o.</
s
>
<
s
xml:id
="
s1261
"
xml:space
="
preserve
">
<
lb
/>
(coſtituẽdo li dui angoli eſteriori.</
s
>
<
s
xml:id
="
s1262
"
xml:space
="
preserve
"> e l n.</
s
>
<
s
xml:id
="
s1263
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1264
"
xml:space
="
preserve
"> l m o.</
s
>
<
s
xml:id
="
s1265
"
xml:space
="
preserve
">) et ducero le due corde.</
s
>
<
s
xml:id
="
s1266
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1267
"
xml:space
="
preserve
"> et
<
lb
/>
h i.</
s
>
<
s
xml:id
="
s1268
"
xml:space
="
preserve
"> alle lor ꝑte curue.</
s
>
<
s
xml:id
="
s1269
"
xml:space
="
preserve
"> Et ꝑche li dui trãſiti naturali.</
s
>
<
s
xml:id
="
s1270
"
xml:space
="
preserve
"> g n.</
s
>
<
s
xml:id
="
s1271
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1272
"
xml:space
="
preserve
"> k o.</
s
>
<
s
xml:id
="
s1273
"
xml:space
="
preserve
"> (ꝑ la prima
<
lb
/>
ſuppoſitione di q̃ſto) ſono equidiſtãti, adique líãgolo.</
s
>
<
s
xml:id
="
s1274
"
xml:space
="
preserve
"> e l n.</
s
>
<
s
xml:id
="
s1275
"
xml:space
="
preserve
"> (ꝑ la ſeconda ꝑte
<
lb
/>
della.</
s
>
<
s
xml:id
="
s1276
"
xml:space
="
preserve
"> 29.</
s
>
<
s
xml:id
="
s1277
"
xml:space
="
preserve
"> del.</
s
>
<
s
xml:id
="
s1278
"
xml:space
="
preserve
"> 1.</
s
>
<
s
xml:id
="
s1279
"
xml:space
="
preserve
"> de Euclide ſara eguale a l angolo.</
s
>
<
s
xml:id
="
s1280
"
xml:space
="
preserve
"> l m o.</
s
>
<
s
xml:id
="
s1281
"
xml:space
="
preserve
"> onde (per la ſeconda
<
lb
/>
ꝑte della.</
s
>
<
s
xml:id
="
s1282
"
xml:space
="
preserve
"> 7.</
s
>
<
s
xml:id
="
s1283
"
xml:space
="
preserve
"> del.</
s
>
<
s
xml:id
="
s1284
"
xml:space
="
preserve
"> 5.</
s
>
<
s
xml:id
="
s1285
"
xml:space
="
preserve
"> del Euclide) quatro angoli retti hauerã vna medema ꝓpor
<
lb
/>
tione ‡ cadaun di loro, et ſimelmẽte la circonferẽtia de cadauno di dui cer-
<
lb
/>
chij donde deriuano li dui archi.</
s
>
<
s
xml:id
="
s1286
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1287
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1288
"
xml:space
="
preserve
"> h i.</
s
>
<
s
xml:id
="
s1289
"
xml:space
="
preserve
"> alli detti dui archi (cadauno al ſuo
<
lb
/>
relatiuo (ꝑ la terza ꝓpoſitione di q̃ſto) hauerãno una medema proportione
<
lb
/>
ꝑ laqual coſa líarco.</
s
>
<
s
xml:id
="
s1290
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1291
"
xml:space
="
preserve
"> uien a eſſer ſimile a líarco.</
s
>
<
s
xml:id
="
s1292
"
xml:space
="
preserve
"> h i.</
s
>
<
s
xml:id
="
s1293
"
xml:space
="
preserve
"> et ſimilmẽte la portii
<
lb
/>
p.</
s
>
<
s
xml:id
="
s1294
"
xml:space
="
preserve
"> alla portii.</
s
>
<
s
xml:id
="
s1295
"
xml:space
="
preserve
">q.</
s
>
<
s
xml:id
="
s1296
"
xml:space
="
preserve
">onde costituẽdo ſopra cadauno de detti archiuna angolo quai
<
lb
/>
ſiano.</
s
>
<
s
xml:id
="
s1297
"
xml:space
="
preserve
"> e p f.</
s
>
<
s
xml:id
="
s1298
"
xml:space
="
preserve
"> et.</
s
>
<
s
xml:id
="
s1299
"
xml:space
="
preserve
"> h.</
s
>
<
s
xml:id
="
s1300
"
xml:space
="
preserve
"> q i.</
s
>
<
s
xml:id
="
s1301
"
xml:space
="
preserve
">li quai dui angoli (ꝑ il ciuerſo delle due ultime diſſinitio-
<
lb
/>
ne del terzo de Euclide) ſarãno fra loro eguali ꝑ laq̃l coſa líãgolo.</
s
>
<
s
xml:id
="
s1302
"
xml:space
="
preserve
"> f e a.</
s
>
<
s
xml:id
="
s1303
"
xml:space
="
preserve
"> (ꝑ
<
lb
/>
la.</
s
>
<
s
xml:id
="
s1304
"
xml:space
="
preserve
"> 31.</
s
>
<
s
xml:id
="
s1305
"
xml:space
="
preserve
"> del terzo de Euclide) ſara eguale a líãgolo.</
s
>
<
s
xml:id
="
s1306
"
xml:space
="
preserve
"> i h e.</
s
>
<
s
xml:id
="
s1307
"
xml:space
="
preserve
"> onde (ꝑ la uigeſimaot
<
lb
/>
taua del.</
s
>
<
s
xml:id
="
s1308
"
xml:space
="
preserve
"> 1.</
s
>
<
s
xml:id
="
s1309
"
xml:space
="
preserve
"> de Euclide) la corda.</
s
>
<
s
xml:id
="
s1310
"
xml:space
="
preserve
"> e f.</
s
>
<
s
xml:id
="
s1311
"
xml:space
="
preserve
"> ſara equidiſtãte alla corda.</
s
>
<
s
xml:id
="
s1312
"
xml:space
="
preserve
"> i h.</
s
>
<
s
xml:id
="
s1313
"
xml:space
="
preserve
"> ꝑ la qual
<
lb
/>
coſa líãgolo.</
s
>
<
s
xml:id
="
s1314
"
xml:space
="
preserve
"> e f a.</
s
>
<
s
xml:id
="
s1315
"
xml:space
="
preserve
"> ſara eguale (ꝑ la ſecida parte della uigeſimanona del pri-
<
lb
/>
mo de Euclide) a líangolo.</
s
>
<
s
xml:id
="
s1316
"
xml:space
="
preserve
"> f i h.</
s
>
<
s
xml:id
="
s1317
"
xml:space
="
preserve
"> adonque il triangolo.</
s
>
<
s
xml:id
="
s1318
"
xml:space
="
preserve
"> a e f.</
s
>
<
s
xml:id
="
s1319
"
xml:space
="
preserve
"> ſara equiangolo
<
lb
/>
altriangolo.</
s
>
<
s
xml:id
="
s1320
"
xml:space
="
preserve
"> a h i.</
s
>
<
s
xml:id
="
s1321
"
xml:space
="
preserve
"> et con ſequentemente ſimile, onde tal proportione È della
<
lb
/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>