Cardano, Geronimo, Opvs novvm de proportionibvs nvmerorvm, motvvm, pondervm, sonorvm, aliarvmqv'e rervm mensurandarum, non solùm geometrico more stabilitum, sed etiam uarijs experimentis & observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, & in V libros digestum. Praeterea Artis Magnae, sive de regvlis algebraicis, liber vnvs abstrvsissimvs & inexhaustus planetotius Ariothmeticae thesaurus ... Item De Aliza Regvla Liber, hoc est, algebraicae logisticae suae, numeros recondita numerandi subtilitate, secundum Geometricas quantitates inquirentis ...

Table of figures

< >
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
< >
page |< < of 291 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="id001781">
                <pb pagenum="98" xlink:href="015/01/117.jpg"/>
              quadrati pentagoni, & eptagoni æquilaterorum nota: & etiam
                <lb/>
              ſubtenſorum duobus ex his. </s>
              <s id="id001782">Sit, gratia exempli, a b 3 & b c <02> 11 1/4m:
                <lb/>
              1 1/2, ut prius, & ponatur b d diameter, erit ad <02> 27 & c d <02> v 22 1/2 m:
                <lb/>
              <02> 101 1/4, quam ducemus in a b, & fiet <02> v 202 1/2 m: <02> 8201 1/4. Duce­
                <lb/>
              mus itidem <02> 27 a d in b c <02> 11 1/4 m: 1 1/2 fiet <02> 303 3/4m: <02> 60 3/4, hoc to­
                <lb/>
              tum diuide per 66, quæ eſt b: fiet a c <02> 8 7/16 m: <02> 1 11/16 p: <02> v: 5 45/72 m: <02>
                <lb/>
              6 1701/5184. Nec credas te errare, quoniam latus pentagoni eſſet, ac ſi an­
                <lb/>
              gulus b rectus eſſet: ſed quia eſt obtuſus, ideo a c eſt alia linea, &
                <lb/>
              maior latere pentagoni. </s>
              <s id="id001783">Et ſimiliter ſi a b, & a c notæ eſſent, utpo­
                <lb/>
                <arrow.to.target n="marg365"/>
                <lb/>
              te a b 3, ut prius a c 5 dico, quòd b c nota eſt: nam a d erit <02> 27, &
                <lb/>
              quia ex b d in a c fit 30, fiet ex b c in a d pos <02> 27, et ex a b in c d <02> 324
                <lb/>
              m: 9 quad. </s>
              <s id="id001784">igitur 30 m: pos <02> 27 æquantur <02> 324 m: 9 quad. </s>
              <s id="id001785">quare
                <lb/>
              900 p: 27 quad. </s>
              <s id="id001786">m: pos <02> 97200
                <expan abbr="æquãtur">æquantur</expan>
              324 m: 9 quad. </s>
              <s id="id001787">igitur 576
                <lb/>
              p: 16 quad. </s>
              <s id="id001788">ęquantur pos <02> 97200. Quadratum igitur p: 36 ęquan­
                <lb/>
              tur pos <02> 379 11/16, erit ergo b c <02> v: <02> 94 59/64 p: <02> 58 59/64 & ſimiliter ſi a c
                <lb/>
              ſit nota, puta 4 erit a b ſubtenſa dimidio arcus a c nota. </s>
              <s id="id001789">Erit enim a e
                <lb/>
              2 ergo d e 3 p: <02> 5 et b e 3 m: <02> 5,
                <expan abbr="igit̃">igitur</expan>
              a b <02> v: 18 m, <02> 180. Igitur hoc
                <lb/>
              modo diuidendo, iungendo, & detrahendo habebimus ex quatu­
                <lb/>
              or illis ſimplicibus trianguli quadrati. </s>
              <s id="id001790">Pentagoni, & eptagoni in
                <lb/>
              numeras linearum magnitudines in circulo. </s>
              <s id="id001791">Et ſimiliter quouis mo
                <lb/>
              do, ut dictum eſt, in quauis figura æquilatera, utpote ſuppoſito
                <lb/>
                <figure id="id.015.01.117.1.jpg" xlink:href="015/01/117/1.jpg" number="111"/>
                <lb/>
              quod deſcriptum ſit non angulum in
                <lb/>
              circulo æquilaterum, quod etiam erit
                <lb/>
              æquiangulum, & ſit arcus a b duplus
                <lb/>
              arcui a c, erit angulus a c b duplus an­
                <lb/>
              gulo a b c, & angulus b a c in portione
                <lb/>
              b d e c ſexcuplus a b c, & triplus a c b.
                <lb/>
              </s>
              <s id="id001792">Erit ergo per demonſtrata proportio
                <lb/>
                <arrow.to.target n="marg366"/>
                <lb/>
              b a ad a c, uelut a c, & c b, ad a b: pro­
                <lb/>
              portio autem a b arcus ad a c, ex ſup­
                <lb/>
              poſito maior eſt proportione rectæ a b ad a c, igitur etiam propor­
                <lb/>
              tione a c & c b ad a b, ergo duo latera trianguli ad tertium minorem
                <lb/>
              habent proportionem, quam arcus ad arcum, quanto rectæ ad re­
                <lb/>
              ctam minor eſt. </s>
              <s id="id001793">Sit rurſus in triangulo b e d quomodolibet modo
                <lb/>
              ſit angulus b d e quadruplus angulo b e d, & diuidatur d per ęqua­
                <lb/>
              lia ducta d f, erit igitur proportio f d, d e ad f e, ut e f ad f d, ſed e f ad
                <lb/>
                <arrow.to.target n="marg367"/>
                <lb/>
              f b ut d e ad d b. </s>
              <s id="id001794">igitur proportio b d, d e ad f b
                <expan abbr="cõpoſita">compoſita</expan>
              ex propor­
                <lb/>
              tionibus e f ad f d, & e d ad d b. </s>
              <s id="id001795">Proportio igitur b d, d e ad f b, ut
                <lb/>
              producti ex e f in e d ad productum ex d fin d b. </s>
              <s id="id001796">Rurſus ponamus,
                <lb/>
                <arrow.to.target n="marg368"/>
                <lb/>
              quod in quadrangulo a b c d primæ figuræ ſit a b 4 b c 3 c d 5 ad 6
                <lb/>
              dico, quòd ſpatium contentum erit notum. </s>
              <s id="id001797">Ductis rectis a c & b d </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>