Cardano, Geronimo, Opvs novvm de proportionibvs nvmerorvm, motvvm, pondervm, sonorvm, aliarvmqv'e rervm mensurandarum, non solùm geometrico more stabilitum, sed etiam uarijs experimentis & observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, & in V libros digestum. Praeterea Artis Magnae, sive de regvlis algebraicis, liber vnvs abstrvsissimvs & inexhaustus planetotius Ariothmeticae thesaurus ... Item De Aliza Regvla Liber, hoc est, algebraicae logisticae suae, numeros recondita numerandi subtilitate, secundum Geometricas quantitates inquirentis ...

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < of 291 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="id001978">
                <pb pagenum="109" xlink:href="015/01/128.jpg"/>
              axungia. </s>
              <s id="id001979">Et quae rota magna ſit: quoniam cum
                <expan abbr="">non</expan>
              rota, ſed axis traha­
                <lb/>
              tur in æquali tempore & magna, & parua trahitur: utra que uerò una
                <lb/>
              conuerſione tantam
                <expan abbr="lineã">lineam</expan>
              rectam ſuperat, quanta eſt rotæ periphe­
                <lb/>
              ria. </s>
              <s id="id001980">Quod ſi plures ſint rotæ celerius feruntur, quia axis minus tan­
                <lb/>
              to
                <expan abbr="rotã">rotam</expan>
              premit. </s>
              <s id="id001981">Et ſi rectus ſit axis, & bene rotundus, & foramen ro
                <lb/>
              tundum, & latius, & è duriſsimo ligno, ut non poſsit in clinari: &
                <lb/>
              rota ipſa in ambitu æqualis, omnia hæc faciunt ad motus uelo cita
                <lb/>
              tem, unde Homerus.
                <lb/>
                <arrow.to.target n="marg405"/>
              </s>
            </p>
            <p type="margin">
              <s id="id001982">
                <margin.target id="marg403"/>
              C
                <emph type="italics"/>
              o
                <emph.end type="italics"/>
              ^{m}.</s>
            </p>
            <p type="margin">
              <s id="id001983">
                <margin.target id="marg404"/>
              P
                <emph type="italics"/>
              ropoſ.
                <emph.end type="italics"/>
              40.</s>
            </p>
            <p type="margin">
              <s id="id001984">
                <margin.target id="marg405"/>
              I
                <emph type="italics"/>
              liad.
                <emph.end type="italics"/>
              23.</s>
            </p>
            <p type="main">
              <s id="id001985">
                <foreign lang="grc">ἴχνια τύπτε όδεοσι άρ & κόνιν ἀμφιχυθῡναι</foreign>
              .</s>
            </p>
            <p type="main">
              <s id="id001986">Id eſt, ueſtigia per cuſsit pedibus, ante que illa puluis pedibus ex­
                <lb/>
              cuſſus (ueſtigia ſcilicet relinquentibus) ingrederetur. </s>
              <s id="id001987">Principalis
                <lb/>
              autem cauſa uelo citatis eſt agens, uelut equi. </s>
              <s id="id001988">Sed inter
                <expan abbr="hũc">hunc</expan>
              motum
                <lb/>
              & priorem medius eſt Scitalæ uocatæ, nam ut in primo axis proci­
                <lb/>
              dit & rotundum à ſuperficie circumagitur, licet axis etiam circum­
                <lb/>
              ducatur, ut axis, & rota, aut ſphæra duplici motu moueantur, ſci­
                <lb/>
              licet antrorſum, & circumcirca, in rota currus duo ijdem motus
                <lb/>
              ſint, axis quo que antrorſum moueatur, ſed non circumagatur: unde
                <lb/>
              impeditior eſt hic motus: ita in Scytala utrunque utro que motu mo­
                <lb/>
              uetur, & circumcirca, & antrorſum, at que id commune eſt, cum pri­
                <lb/>
              mo ita axis mouet rotas, non rotæ axem, quòd ſecundo motui ro­
                <lb/>
              tarum in curru proprium eſt, ut tantum degenerent à primo motu,
                <lb/>
              quanto leuius uertuntur, quàm in ſecundo motu. </s>
              <s id="id001989">Trahitur ergo
                <lb/>
                <figure id="id.015.01.128.1.jpg" xlink:href="015/01/128/1.jpg" number="121"/>
                <lb/>
              iugum in ſcitala, uelut in rotis currus,
                <lb/>
              ſed eſt annexum rotis non in curri­
                <lb/>
              bus. </s>
              <s id="id001990">Propterea in primo motu trahi­
                <lb/>
              tur, uel impellitur à ſuperficie: in ſe­
                <lb/>
              cundo a b axe, ſed non affixo rotis, unde ægrè trahuntur in ſcyta­
                <lb/>
              la ab axe affixo rotę. </s>
              <s id="id001991">Quare leuius quàm in curru, difficilius quàm
                <lb/>
              in rota uel ſphæra à ſuperficie extima circumacta. </s>
              <s id="id001992">Quartus modus
                <lb/>
              eſt, ut dixi, circumuecta rota ab axe, quum non progreditur, ut in
                <lb/>
              moletrinis, & rotis, quibus ferrum exacuitur. </s>
              <s id="id001993">Eſt enim hic ſimilior
                <lb/>
              primo, quia contrarius, in primo enim procedit rota, & uertitur à
                <lb/>
              circumferentia, hic quieſcit rota, & mouetur ab axe. </s>
              <s id="id001994">Proximus huic
                <lb/>
              eſt, qui fit in ſucculis ob firmitatem axis: nam axis eſt coniunctus
                <lb/>
              rotæ. </s>
              <s id="id001995">Vltimus eſt trochlearum, qui & difficillimus: ſit enim à cir­
                <lb/>
              cumferentia, & axis diſiunctus eſt à trochlea: quod ad dit difficulta­
                <lb/>
              tem. </s>
              <s id="id001996">Sed & trochlea caret colloppibus. </s>
              <s id="id001997">Ergo uerum eſt, quod o­
                <lb/>
              mnia rotunda facilius circumaguntur, ſed uaria ratione: nam plus
                <lb/>
              mota ſuper aliquo plano, ut in plauſtris & ſcytalis: minus in ſuccu­
                <lb/>
              lis, & rotis acuentibus ferrum, & molis: nam & ſi rotunditatem iu­
                <lb/>
              uet ob æqualitatem ad conuerſionem, non tamen in his eſt ad eò </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>