Cardano, Geronimo, Opvs novvm de proportionibvs nvmerorvm, motvvm, pondervm, sonorvm, aliarvmqv'e rervm mensurandarum, non solùm geometrico more stabilitum, sed etiam uarijs experimentis & observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, & in V libros digestum. Praeterea Artis Magnae, sive de regvlis algebraicis, liber vnvs abstrvsissimvs & inexhaustus planetotius Ariothmeticae thesaurus ... Item De Aliza Regvla Liber, hoc est, algebraicae logisticae suae, numeros recondita numerandi subtilitate, secundum Geometricas quantitates inquirentis ...

Page concordance

< >
< >
page |< < of 291 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="id002543">
                <pb pagenum="144" xlink:href="015/01/163.jpg"/>
              una eſt ſuperflua, quia ut dixi, una ſequitur ad aliam. </s>
              <s id="id002544">Ex hoc pa­
                <lb/>
              tet cur Diocles aſſumpſerit lineam unam, quæ eſt a c, quæ ſe ha­
                <lb/>
              bet ad a d, & d b, ut uiciſsim a d, & d b ad additas, quod eſt pri­
                <lb/>
              mum demonſtratum. </s>
              <s id="id002545">Sic enim omittit primum quod proponit Ar
                <lb/>
              chimedes, & aſſumit quod proximum eſt: & ideò Archimedes non
                <lb/>
              probat, nec præſupponit, quod à Diocle probatur, ſcilicet datum
                <lb/>
              eſſe punctum d in linea a b, ſed ſolum in linea g f, ideò cogitur pro­
                <lb/>
              bare ſecundum quod demonſtratur ab Eutocio, & à nobis demon
                <lb/>
              ſtratum eſt ſuprà. </s>
              <s id="id002546">Archimedes
                <expan abbr="aũt">aut</expan>
              aſſumit
                <expan abbr="lineã">lineam</expan>
              extra circulum,
                <expan abbr="quã">quam</expan>
                <lb/>
              uocat b f, quæ eſt æqualis b c medietati: aliam aſſumit quam uocat
                <lb/>
              b h, cuius proportio ad b d eſt ſicut quadrati ad a d quadratum a b.
                <lb/>
              </s>
              <s id="id002547">Conſtat ergo quod proportio g d ad d f eſt data. </s>
              <s id="id002548">Et ſimiliter f g ad
                <lb/>
              g d, & eſt 1 præ proportione data. </s>
              <s id="id002549">Vnde notandum quod datum
                <lb/>
              dicitur, ſimpliciter cognitum alio modo, dicitur datum poſitione,
                <lb/>
              quod eſt certum & tale, uelut ſi quis dicat, diuide 10 in duos nume­
                <lb/>
              ros quadratos: hoc non eſt datum, poteſt enim diuidi pluribus mo
                <lb/>
              dis. </s>
              <s id="id002550">At ſi dicas ut una pars ſit alterius
                <expan abbr="quadratũ">quadratum</expan>
              , iſtud antequàm ſci
                <lb/>
              untur partes, dicitur datum poſitione. </s>
              <s id="id002551">Ergo datum poſitione eſt du
                <lb/>
              plex, uel ut ratio nota ſit, non autem quantitas, ut ſi dicam a b eſt du
                <lb/>
              pla ad b c, utra que dicitur nota poſitione, quo­
                <lb/>
              niam neſcio quanta ſit a b. </s>
              <s id="id002552">Vel ſi quantitas eſt
                <lb/>
                <figure id="id.015.01.163.1.jpg" xlink:href="015/01/163/1.jpg" number="168"/>
                <lb/>
              nota proportio ignota ſit, ut ſi a c ſit 10, & ſit,
                <lb/>
              ut b c ſit <02> relata, a b erit punctus b, & proportio a b ad b c data po
                <lb/>
              ſitione, non tamen nota. </s>
              <s id="id002553">Et ſi dicas igitur omnia, quæ habent deter
                <lb/>
              minationem erunt data poſitione? </s>
              <s id="id002554">Dico quod non, quia oportet,
                <lb/>
              ut illa determinatio comprehendatur ſub una ratione, eaque ſaltem
                <lb/>
              generaliter cognita.</s>
            </p>
            <p type="main">
              <s id="id002555">Propoſitio centeſima quinquageſima tertia.</s>
            </p>
            <p type="main">
              <s id="id002556">Vim quan cun que manus multiplicare.
                <lb/>
                <arrow.to.target n="marg498"/>
              </s>
            </p>
            <p type="margin">
              <s id="id002557">
                <margin.target id="marg498"/>
              C
                <emph type="italics"/>
              o
                <emph.end type="italics"/>
              ^{m}.</s>
            </p>
            <p type="main">
              <s id="id002558">Cum enim radimus aut trahimus manifeſtum eſt, </s>
            </p>
            <p type="main">
              <s id="id002559">
                <arrow.to.target n="marg499"/>
                <lb/>
              quod ambabus manibus uis conduplicatur, & ma­
                <lb/>
                <figure id="id.015.01.163.2.jpg" xlink:href="015/01/163/2.jpg" number="169"/>
                <lb/>
              ior redditur, quanta eſt proportio totius ad exceſ­
                <lb/>
              ſum: uelut ſit a quod mouetur ab una manu uiribus
                <lb/>
              ut b, quæ ſunt exceſſus b d ſupra a, cum ergo propor
                <lb/>
              tio c b d ad a ſit compoſita ex proportionibus c &
                <lb/>
              b d ad a manifeſtum eſt, quod erit producta ex pro­
                <lb/>
              portione c b d ad b d, & b d ad a, ſed e b d eſt dupla
                <lb/>
              ad b d, quia e eſt æqualis, c igitur proportio c b d ad
                <lb/>
                <arrow.to.target n="marg500"/>
                <lb/>
              a eſt maior multo quàm duorum exceſſuum, qui mo
                <lb/>
              uerent in proportione dupla: uelut ſi adderemus f </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>