Cardano, Geronimo, Opvs novvm de proportionibvs nvmerorvm, motvvm, pondervm, sonorvm, aliarvmqv'e rervm mensurandarum, non solùm geometrico more stabilitum, sed etiam uarijs experimentis & observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, & in V libros digestum. Praeterea Artis Magnae, sive de regvlis algebraicis, liber vnvs abstrvsissimvs & inexhaustus planetotius Ariothmeticae thesaurus ... Item De Aliza Regvla Liber, hoc est, algebraicae logisticae suae, numeros recondita numerandi subtilitate, secundum Geometricas quantitates inquirentis ...

Table of figures

< >
[Figure 151]
[Figure 152]
[Figure 153]
[Figure 154]
[Figure 155]
[Figure 156]
[Figure 157]
[Figure 158]
[Figure 159]
[Figure 160]
[Figure 161]
[Figure 162]
[Figure 163]
[Figure 164]
[Figure 165]
[Figure 166]
[Figure 167]
[Figure 168]
[Figure 169]
[Figure 170]
[Figure 171]
[Figure 172]
[Figure 173]
[Figure 174]
[Figure 175]
[Figure 176]
[Figure 177]
[Figure 178]
[Figure 179]
[Figure 180]
< >
page |< < of 291 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="id002406">
                <pb pagenum="135" xlink:href="015/01/154.jpg"/>
              c d ipſius a f ex Euclide. </s>
              <s id="id002407">Dico ergo quod maior eſt proportio a b
                <lb/>
                <figure id="id.015.01.154.1.jpg" xlink:href="015/01/154/1.jpg" number="149"/>
                <lb/>
              ad c d, quàm a e ad e f, fiat d g ad quam ſit b c ut
                <lb/>
                <arrow.to.target n="marg467"/>
                <lb/>
              a b ad c d, eritque a e ad c g ut a b ad c d, minor au­
                <lb/>
              tem eſt a e ad c f, quam ad c g, igitur minor a e ad
                <lb/>
              c f quàm a b ad c d quod fuit propoſitum. </s>
              <s id="id002408">Simili
                <lb/>
              ter ſi fuerint duæ quantitates, a b & c d, quarum a b ſit maiore, c d
                <lb/>
              autem eadem e minor, dico, quòd dimidium aggregati a b & c d
                <lb/>
              maiorem habebit proportionem ad e, quàm c d & minor, nam iun­
                <lb/>
              cta b f æquali d e ad a b, ita ut f g ſit dimidium totius a f, qùia ergo
                <lb/>
                <figure id="id.015.01.154.2.jpg" xlink:href="015/01/154/2.jpg" number="150"/>
                <lb/>
              f g eſt dimidium f a & fb eſt minor dimidio
                <lb/>
                <arrow.to.target n="marg468"/>
                <lb/>
              f a cum ſit minor b a, & ſimiliter f g eſt mi­
                <lb/>
              nor a b, quia a b eſt maior dimidio a f, quia
                <lb/>
              eſt maior b f, ergo proportio g f ad c eſt ma
                <lb/>
              ior quam b f ad e, ita quam c d ad e, & mi­
                <lb/>
                <arrow.to.target n="marg469"/>
                <lb/>
              nor quàm a b ad e, quod fuit propoſitum. </s>
              <s id="id002409">Quo uiſo uolo <02> 1000
                <lb/>
              quadratam, & quòd de quadrata dico, dico etiam de alijs radici­
                <lb/>
              bus & erit ex ſecunda regula harum 31 39/62 & quadratum erit 1000
                <lb/>
              1521/3844. Iuxta ergo primam partem regulæ 31 38/61 erit minus, & in ueritate
                <lb/>
              in eo, quod fit ducendo, ut uides, & hoc eſt pro­
                <lb/>
                <figure id="id.015.01.154.3.jpg" xlink:href="015/01/154/3.jpg" number="151"/>
                <lb/>
              ximum ad 11/160, multiplico igitur duplum 31 39/62,
                <lb/>
              quod eſt fermè 63 1/4 in 1/160 fient 63/160 detrahe ex
                <lb/>
              1521/3844 hoc modo, diuide 3844 per 160 exit 24 /40
                <lb/>
              diuide 1521 per 24, exit 63 3/8, habes igitur quod
                <lb/>
              1521/3844 ſunt 63/160, igitur detracto 63/160 ex 63/160 nihil relinquitur, & erit <02> exa­
                <lb/>
              cta ualde 1000 hoc 31 38/61 cuius quadratum 1000 41/3421 uides breuita
                <lb/>
              tem, & propinquitatem in producto differentia eſt 1/100 aut parum
                <lb/>
              maius quod ad radicem comparatum cum debeat diuidi per du­
                <lb/>
              plum eius erit paulo maius 1/6300. Vnde facilior eſt, & breuior hæc
                <lb/>
              uia quàm per 00 additus. </s>
              <s id="id002410">Rurſus uolo aliquid
                <expan abbr="adim̃ere">adimere</expan>
              & cum pro
                <lb/>
              pinquitate ita facio. </s>
              <s id="id002411">Conſidero quòd 31 38/61 eſt maius 1/6300 radice, di­
                <lb/>
              uido 6300 per 62 exit 103 fermè, neque enim curo in hoc fractiones,
                <lb/>
              multiplico ergo 103 in 38/61 & habeo 3914/6283 hic denominator eſt proxi­
                <lb/>
              mus 6300, aufero ergo 1 ex 3914, habebo ualde proximam <02> 1000,
                <lb/>
              31 3913/6283 cuius quadratum eſt 1000 minus 1/1048 hoc ut dixi diuiſum
                <lb/>
              per duplum <02> quod eſt 63 eſt omnino inſenſile in radice.</s>
            </p>
            <p type="margin">
              <s id="id002412">
                <margin.target id="marg467"/>
              8. P
                <emph type="italics"/>
              ropoſ.
                <lb/>
              quinti
                <emph.end type="italics"/>
              E
                <emph type="italics"/>
              lem.
                <emph.end type="italics"/>
                <lb/>
              P
                <emph type="italics"/>
              er
                <emph.end type="italics"/>
              18.
                <lb/>
                <emph type="italics"/>
              quinti
                <emph.end type="italics"/>
              E
                <emph type="italics"/>
              lem.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s id="id002413">
                <margin.target id="marg468"/>
              P
                <emph type="italics"/>
              er
                <emph.end type="italics"/>
              11.
                <lb/>
                <emph type="italics"/>
              quinti
                <emph.end type="italics"/>
              E
                <emph type="italics"/>
              lem.
                <lb/>
                <expan abbr="amplificatã">amplificatam</expan>
              .
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s id="id002414">
                <margin.target id="marg469"/>
              P
                <emph type="italics"/>
              er
                <emph.end type="italics"/>
              8.
                <emph type="italics"/>
              quin­
                <lb/>
              ti
                <emph.end type="italics"/>
              E
                <emph type="italics"/>
              lem.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s id="id002415">Quinta regula eſt omnium pulcherrima, & eſt communis omni
                <lb/>
              bus & fractis & integris & omnibus generibus radicum, & ſit ex­
                <lb/>
              emplum, uolo <02> radicis ſupraſcriptæ ſcilicet 31 3913/6283 multiplico 31
                <lb/>
              in 6283, & fit 194793, cui addo 3913, fit 198686 manifeſtum eſt igi­
                <lb/>
              tur, quod 198686/6283 æquiualet 31 3913/6283 hoc facto, quod eſt commune </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>