Fabri, Honoré, Tractatus physicus de motu locali, 1646

#### Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 491 > >|
1
LIBER SEPTIMVS,
DE MOTV CIRCVLARI.
CVM in natura minimè deſideretur motus cir­
cularis, eius affectiones breuiter in hoc libro
demonſtrantur.
DEFINITIO 1.
MOtus circularis eſt, cuius linea æqualiter in omnibus ſuis punctis à com­
muni centro distat. v. g. ſi punctum in periphæria circuli moue­
retur.
Definitio 2.
Radius motus eſt linea recta ducta ab illo communi centro ad periphæ­
riam.
Definitio 3.
Arcus eſt pars periphæria maior, vel minor.
Definitio 4.
Tangens eſt linea, quæ tangit periphæriam in vnico puncto, quam tamen
non ſecat; hæc omnia clara ſunt, immò vulgaria.
Hypotheſis 1.
Si dum rota vertitur imponatur eius ſumma ſuperficiei aliquod mobile,
proijcitur à rota, ſeu potiùs amouetur; res clara eſt in molari lapide, in
funda, &c.
Axioma 1.
Illa mouentur æqualiter, quæ temporibus æqualibus aqualia ſpatia percur­
runt; inæqualiter verò qua inæqualia; qua maiora, celeriùs; tardiùs, qua
minora.
Axioma 2.
Qua ſimul incipiunt moueri, & deſinunt, aquali tempore mouentur.