Fabri, Honoré, Tractatus physicus de motu locali, 1646

#### Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 491 > >|
1poteſt declinari; ſit enim circulus immobilis BDFC, mobilis FEG,
punctum F poſt decurſum quadrantem FD extat ſupra planum hori­
zontis tota ID erecta;
poſt decurſum verò ſemicirculum tota BK
erecta æquali BF, vt conſtat;
igitur vertatur FBK, circa FB, donec incu­
bet perpendiculariter plano horizontali in BF;
tùm circa FK, ita ere­
ctam vertatur planum, donec incubet DI, erecta in I, fiet planum, in quo
deſcribetur linea huius motus;
aſſumatur autem DH æqualis AI; dico
quod ducetur per FHK:
ſimiliter inuenientur alia puncta, quod ſuffi­
ciat indicaſſe;
eſt autem hic motus maximè inæqualis propter ratio­
nem, de qua ſuprà:
ſed de his ſatis; immò certum eſt punctum F ſuo
motu prædicto deſcribere perfectum circulum duplum circuli rota­
ti, cuius centrum eſt D erectum in A, nam DH, DF, DK ſunt æqua­
les;
ſi enim circulus tangat in M, punctum F erectum toto arcu FM,
reſpondebit perpendiculariter puncto O, ita vt OM ſit æqualis PB, vel
HS, vel AN; erigatur autem OR, donec incubet perpendiculariter,
extat ſuper AD erecta in A tota QR, ita OQ ſit æqualis AD.
Sed
dratum MO erit 8. igitur quadratum A 24. ſed extat ſuper MO, QR,
æqualis OM;
igitur ſi à D erecto ducantur duæ rectæ, altera ad Q, altera