Fabri, Honoré, Tractatus physicus de motu locali, 1646

Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
< >
page |< < of 491 > >|
    <archimedes>
      <text>
        <front>
          <section>
            <p id="N10CCD" type="main">
              <s id="N10CEF">
                <pb xlink:href="026/01/024.jpg"/>
              fundæ, quæ ſi demittatur, ſequitur motus rectus: </s>
              <s id="N10CF9">quidam tamen
                <lb/>
              non eſt merè peraccidens, vt cùm pellitur extremitas cylindri in
                <lb/>
              plano horizontali; eſt enim, iuxta inſtitutionem naturæ, ad facili­
                <lb/>
              tatem motus. </s>
            </p>
            <p id="N10D03" type="main">
              <s id="N10D05">2. Quippe tale eſt naturæ inſtitutum, vt eo motu corpora mo­
                <lb/>
              ueantur, quo faciliùs moueri poſſunt: </s>
              <s id="N10D0B">atqui cùm pellitur altera cy­
                <lb/>
              lindri extremitas, in plano horizontali putà innatantis, faciliùs
                <lb/>
              mouetur, quàm recto, & quaſi minore ſumptu, cùm minùs ſpatij
                <lb/>
              acquirat: æquali tempore: </s>
              <s id="N10D15">poteſt dari motus circularis mixtus ex
                <lb/>
              duobus rectis, quorum vnus ſit, vt ſinus recti, alius vt verſi; vix
                <lb/>
              tamen hoc accidit vnquàm, ſed tantùm oritur hic motus ex
                <lb/>
              determinatione per tangentem impedita, ratione alicuius puncti
                <lb/>
              immobilis. </s>
            </p>
            <p id="N10D21" type="main">
              <s id="N10D23">3. Hinc, ſi tollatur impedimentum, ſtatim per tangentem or­
                <lb/>
              bis fit motus, vt patet in funda: </s>
              <s id="N10D29">inæqualiter partes radij prædicti
                <lb/>
              orbis mouentur, iuxta proportionem diſtantiæ maioris, & minoris
                <lb/>
              à centro: </s>
              <s id="N10D31">hinc propagatio impetus inæqualis, de qua iam ſuprà,
                <lb/>
              ſingulis inſtantibus & punctis eſt noua determinatio; </s>
              <s id="N10D37">quia, ſcilicet,
                <lb/>
              ſingulis punctis ſua tangens reſpondet: </s>
              <s id="N10D3D">hinc, ſi imponatur rotæ
                <lb/>
              aliud corpus, ſtatim abigitur, ſine ſit in ſitu verticali, ſiue in ſitu ho­
                <lb/>
              rizontali; hinc dum turbo rotatur, ſi vel aquæ guttula eius ſuper­
                <lb/>
              ficies aſpergitur, & ſtatim diſpergitur. </s>
            </p>
            <p id="N10D47" type="main">
              <s id="N10D49">4 Dari impetum in motu circulari certiſſimum eſt: </s>
              <s id="N10D4D">punctum phy­
                <lb/>
              ſicum eſt capax huius motus; cuius finis multiplex eſt; </s>
              <s id="N10D53">corpus mo­
                <lb/>
              uetur motu circulari circa centrum immobile cum motus centri
                <lb/>
              impeditur non tamen motus orbis, ad quem impetus facilè deter­
                <lb/>
              minatur, cùm ſit ad omnes lineas indifferens: </s>
              <s id="N10D5D">adde vſum vectis,
                <lb/>
              trochleæ, aliorúmque organorum, qui ſine motu circulari eſſe non
                <lb/>
              poteſt: omitto motum progreſſiuum, ipsúmque brachiorum, & ti­
                <lb/>
              biarum vſum, qui motu circulari carere non poteſt. </s>
            </p>
            <p id="N10D67" type="main">
              <s id="N10D69">5. Motus circularis rotæ in plano verticali eſt æquabilis per ſe; </s>
              <s id="N10D6D">
                <lb/>
              quia nihil eſt, quod impetum ſemel impreſſum deſtruat: </s>
              <s id="N10D72">licèt enim
                <lb/>
              ſingulis inſtantibus ſit noua determinatio, nullus tamen impetus
                <lb/>
              eſt fruſtrà; </s>
              <s id="N10D7A">quippe illud ſpatium acquiritur in linea curua, quod in
                <lb/>
              recta, ſi nullum eſſet impedimentum, percurreret: </s>
              <s id="N10D80">quemadmodum
                <lb/>
              enim in reflexione, quæ fit à plano immobili, nullus deſtruitur im­
                <lb/>
              petus; </s>
              <s id="N10D88">ita nullus hîc deſtruitur; </s>
              <s id="N10D8C">tam enim centrum illud immobile
                <lb/>
              ad ſe quaſi trahit mobile, quàm planum immobile à ſe repellit; in
                <lb/>
              quo eſt perfectè analogia. </s>
            </p>
          </section>
        </front>
      </text>
    </archimedes>