Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
[Figure 151]
< >
page |< < (11) of 213 > >|
13311DE CENTRO GRA VIT. SOLID.& per o ducatur o p ad k m ipſi h g æquidiſtans. Itaque li
nea h m bifariã uſque eò diuidatur, quoad reliqua ſit pars
quædam q m, minor o p.
deinde h m, m g diuidantur in
partes æ quales ipſi m q:
& per diuiſiones lineæ ipſi m K
æ quidiſtantes ducantur.
puncta uero, in quibus hæ trian-
gulorum latera ſecant, coniungantur ductis lineis r s, t u,
89[Figure 89] x y;
quæ baſi g h æquidiſtabunt. Quoniam enim lineæ g z,
h α ſunt æ quales:
itemq; æquales g m, m h: ut m g ad g z,
ita erit m h, ad h α:
& diuidendo, ut m z ad z g, ita m α ad
α h.
Sed ut m z ad z g, ita k r ad r g: & ut m α ad α h, ita k s
112. ſexti. ad s h.
quare ut κ r ad r g, ita k s ad s h. æ quidiſtant igitur
22I1. quinti inter ſe ſe r s, g h.
eadem quoque ratione demonſtrabimus
332. ſexti.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index