13914DE CENTRO GRAVIT. SOLID.
ſimiliter demonſtrabitur totius priſmatis a _K_ grauitatis eſ
ſe centrum. Simili ratione & in aliis priſinatibus illud
idem ſacile demonſtrabitur. Quo autem pacto in omni
figura rectilinea centrum grauitatis inueniatur, do cuimus
in commentariis in ſextam propoſitionem Archimedis de
quadratura parabolæ.
ſe centrum. Simili ratione & in aliis priſinatibus illud
idem ſacile demonſtrabitur. Quo autem pacto in omni
figura rectilinea centrum grauitatis inueniatur, do cuimus
in commentariis in ſextam propoſitionem Archimedis de
quadratura parabolæ.
Sit cylindrus, uel cylindri portio c e cuius axis a b:
ſece-
turq, plano per axem ducto; quod ſectionem faciat paral-
lelo grammum c d e f: & diuiſis c f, d e bifariam in punctis
94[Figure 94] g h, per ea ducatur planum baſi æquidiſtans. erit ſectio g h
circulus, uel ellipſis, centrum habens in axe; quod ſit K: at-
114. huius. que erunt ex iis, quæ demonſtrauimus, centra grauitatis
planorum oppoſitorum puncta a b: & plani g h ipſum _k_. in
quo quidem plano eſt centrum grauitatis cylindri, uel cy-
lindri portionis. Dico punctum K cylindri quoque, uel cy
lindri portionis grauitatis centrum eſſe. Si enim fieri po-
teſt, ſitl centrum: ducaturq; k l, & extra figuram in m pro-
ducatur. quam uero proportionem habet linea m K ad _k_
turq, plano per axem ducto; quod ſectionem faciat paral-
lelo grammum c d e f: & diuiſis c f, d e bifariam in punctis
94[Figure 94] g h, per ea ducatur planum baſi æquidiſtans. erit ſectio g h
circulus, uel ellipſis, centrum habens in axe; quod ſit K: at-
114. huius. que erunt ex iis, quæ demonſtrauimus, centra grauitatis
planorum oppoſitorum puncta a b: & plani g h ipſum _k_. in
quo quidem plano eſt centrum grauitatis cylindri, uel cy-
lindri portionis. Dico punctum K cylindri quoque, uel cy
lindri portionis grauitatis centrum eſſe. Si enim fieri po-
teſt, ſitl centrum: ducaturq; k l, & extra figuram in m pro-
ducatur. quam uero proportionem habet linea m K ad _k_