Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(15)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3622
"
xml:space
="
preserve
">
<
pb
o
="
15
"
file
="
0143
"
n
="
143
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
figure
xlink:label
="
fig-0143-01
"
xlink:href
="
fig-0143-01a
"
number
="
97
">
<
image
file
="
0143-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01
"/>
</
figure
>
ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
<
lb
/>
dri portio ad c_y_lindri portionem: </
s
>
<
s
xml:id
="
echoid-s3623
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3624
"
xml:space
="
preserve
">ut p_y_ramis ad p_y_ra-
<
lb
/>
midem, ita priſma ad priſma, cum eadem ſit baſis, & </
s
>
<
s
xml:id
="
echoid-s3625
"
xml:space
="
preserve
">æqua
<
lb
/>
lis altitudo; </
s
>
<
s
xml:id
="
echoid-s3626
"
xml:space
="
preserve
">erit c_y_lindrus uel c_y_lindri portio x priſma-
<
lb
/>
ti _y_ æqualis. </
s
>
<
s
xml:id
="
echoid-s3627
"
xml:space
="
preserve
">eftq; </
s
>
<
s
xml:id
="
echoid-s3628
"
xml:space
="
preserve
">ut ſpacium g h ad ſpacium x, ita c_y_lin-
<
lb
/>
drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
<
lb
/>
tionem x. </
s
>
<
s
xml:id
="
echoid-s3629
"
xml:space
="
preserve
">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
<
lb
/>
c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0143-01
"
xlink:href
="
note-0143-01a
"
xml:space
="
preserve
">7. quinti</
note
>
ſpacio g h deſcripta, eandem proportionem habere, quam
<
lb
/>
ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3630
"
xml:space
="
preserve
">quod demonſtrandum fuerat.</
s
>
<
s
xml:id
="
echoid-s3631
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
head
xml:id
="
echoid-head81
"
xml:space
="
preserve
">THE OREMA IX. PROPOSITIO IX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3632
"
xml:space
="
preserve
">Si pyramis ſecetur plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3633
"
xml:space
="
preserve
">ſe-
<
lb
/>
ctio erit figura ſimilis ei, quæ eſt baſis, centrum
<
lb
/>
grauitatis in axe habens.</
s
>
<
s
xml:id
="
echoid-s3634
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>