Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (15) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3622" xml:space="preserve">
              <pb o="15" file="0143" n="143" rhead="DE CENTRO GRAVIT. SOLID."/>
              <figure xlink:label="fig-0143-01" xlink:href="fig-0143-01a" number="97">
                <image file="0143-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01"/>
              </figure>
            ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
              <lb/>
            dri portio ad c_y_lindri portionem: </s>
            <s xml:id="echoid-s3623" xml:space="preserve">& </s>
            <s xml:id="echoid-s3624" xml:space="preserve">ut p_y_ramis ad p_y_ra-
              <lb/>
            midem, ita priſma ad priſma, cum eadem ſit baſis, & </s>
            <s xml:id="echoid-s3625" xml:space="preserve">æqua
              <lb/>
            lis altitudo; </s>
            <s xml:id="echoid-s3626" xml:space="preserve">erit c_y_lindrus uel c_y_lindri portio x priſma-
              <lb/>
            ti _y_ æqualis. </s>
            <s xml:id="echoid-s3627" xml:space="preserve">eftq; </s>
            <s xml:id="echoid-s3628" xml:space="preserve">ut ſpacium g h ad ſpacium x, ita c_y_lin-
              <lb/>
            drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
              <lb/>
            tionem x. </s>
            <s xml:id="echoid-s3629" xml:space="preserve">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
              <lb/>
            c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
              <lb/>
              <note position="right" xlink:label="note-0143-01" xlink:href="note-0143-01a" xml:space="preserve">7. quinti</note>
            ſpacio g h deſcripta, eandem proportionem habere, quam
              <lb/>
            ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
              <lb/>
            </s>
            <s xml:id="echoid-s3630" xml:space="preserve">quod demonſtrandum fuerat.</s>
            <s xml:id="echoid-s3631" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div224" type="section" level="1" n="74">
          <head xml:id="echoid-head81" xml:space="preserve">THE OREMA IX. PROPOSITIO IX.</head>
          <p>
            <s xml:id="echoid-s3632" xml:space="preserve">Si pyramis ſecetur plano baſi æquidiſtante; </s>
            <s xml:id="echoid-s3633" xml:space="preserve">ſe-
              <lb/>
            ctio erit figura ſimilis ei, quæ eſt baſis, centrum
              <lb/>
            grauitatis in axe habens.</s>
            <s xml:id="echoid-s3634" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>