Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
181
35
182
183
36
184
185
37
186
187
38
188
189
39
190
191
40
192
193
41
194
195
42
196
197
43
198
199
44
200
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4436
"
xml:space
="
preserve
">
<
pb
file
="
0178
"
n
="
178
"
rhead
="
FED. COMMANDINI
"/>
producantur. </
s
>
<
s
xml:id
="
echoid-s4437
"
xml:space
="
preserve
">Quoniam igitur pyramis ſecatur planis bafi
<
lb
/>
æquidiſtantibus, ſectiones ſimiles erunt: </
s
>
<
s
xml:id
="
echoid-s4438
"
xml:space
="
preserve
">atque erunt qua-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0178-01
"
xlink:href
="
note-0178-01a
"
xml:space
="
preserve
">9. huius</
note
>
drata, uel rectangula circa circulos, uel ellipſes deſcripta,
<
lb
/>
quemadmodum & </
s
>
<
s
xml:id
="
echoid-s4439
"
xml:space
="
preserve
">in ipſa baſi. </
s
>
<
s
xml:id
="
echoid-s4440
"
xml:space
="
preserve
">Sed cum circuli inter ſe eã
<
lb
/>
proportionem habeant, quam diametrorum quadrata:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4441
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0178-02
"
xlink:href
="
note-0178-02a
"
xml:space
="
preserve
">2. duode-
<
lb
/>
cimi.</
note
>
itemq; </
s
>
<
s
xml:id
="
echoid-s4442
"
xml:space
="
preserve
">ellipſes eam quam rectangula ex ipſarum diametris
<
lb
/>
conſtantia: </
s
>
<
s
xml:id
="
echoid-s4443
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4444
"
xml:space
="
preserve
">ſit circulus, uel ellipſis circa diametrum e f
<
lb
/>
<
figure
xlink:label
="
fig-0178-01
"
xlink:href
="
fig-0178-01a
"
number
="
133
">
<
image
file
="
0178-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0178-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0178-03
"
xlink:href
="
note-0178-03a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
proportionalis inter circulos, uel ellipſes a b, c d; </
s
>
<
s
xml:id
="
echoid-s4445
"
xml:space
="
preserve
">erit re-
<
lb
/>
ctangulum e f etiam inter rectangula a b, c d proportio-
<
lb
/>
nale: </
s
>
<
s
xml:id
="
echoid-s4446
"
xml:space
="
preserve
">per rectangulum enim nunc breuitatis cauſa etiã ip-
<
lb
/>
ſum quadratum intelligemus. </
s
>
<
s
xml:id
="
echoid-s4447
"
xml:space
="
preserve
">quare ex iis, quæ proxime
<
lb
/>
dicta ſunt, pyramis baſim habens æqualem dictis rectangu
<
lb
/>
lis, & </
s
>
<
s
xml:id
="
echoid-s4448
"
xml:space
="
preserve
">altitudinem eandem, quam fruſtum a d, ipſi fruſto à
<
lb
/>
pyramide abſciſſo æqualis probabitur. </
s
>
<
s
xml:id
="
echoid-s4449
"
xml:space
="
preserve
">ut autem rectangu
<
lb
/>
lum c d ad rectangulũ e f, ita circulus, uel ellipſis c d a d e f
<
lb
/>
circulum, uel ellipſim: </
s
>
<
s
xml:id
="
echoid-s4450
"
xml:space
="
preserve
">componendoq; </
s
>
<
s
xml:id
="
echoid-s4451
"
xml:space
="
preserve
">ut rectangula c d,
<
lb
/>
e f, ad e f rectangulum, ita circuli, uel ellipſes e d, e f, ad e f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4452
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4453
"
xml:space
="
preserve
">ut rectangulum e f ad rectangulum a b, ita cir culus, uel
<
lb
/>
cllipſis e f ad a b circulum, uel ellipſim. </
s
>
<
s
xml:id
="
echoid-s4454
"
xml:space
="
preserve
">ergo ex æquali, & </
s
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">
<
lb
/>
componendo, utrectãgula c d, e f, a b ad ipſum a b, ita </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>