Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < (36) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <p>
            <s xml:space="preserve">
              <pb o="36" file="0183" n="183" rhead="DE CENTRO GRAVIT. SOLID."/>
            grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
              <lb/>
            ſtat; </s>
            <s xml:space="preserve">hoc eſt ipſius fruſti. </s>
            <s xml:space="preserve">Sed fruſti centrum eſt etiam in a-
              <lb/>
            xe g h. </s>
            <s xml:space="preserve">ergo in puncto φ, in quo lineæ z u, g h conueniunt.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque u φ ad φ z eam proportionem habet, quam pyramis
              <lb/>
              <anchor type="note" xlink:label="note-0183-01a" xlink:href="note-0183-01"/>
            b c f e d ad pyramidem a b c d. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">componendo u z ad z φ
              <lb/>
            eam habet, quam fruſtum ad pyramidem a b c d. </s>
            <s xml:space="preserve">Vtuero
              <lb/>
            u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
              <lb/>
            u o φ, z p φ. </s>
            <s xml:space="preserve">quare o p ad p φ eſt ut fruſtum ad pyramidem
              <lb/>
            a b c d. </s>
            <s xml:space="preserve">ſed ita erat o p ad p q. </s>
            <s xml:space="preserve">æquales igitur ſunt p φ, p q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="note" xlink:label="note-0183-02a" xlink:href="note-0183-02"/>
            q φ unum atque idem punctum. </s>
            <s xml:space="preserve">ex quibus ſequitur lineam
              <lb/>
            z u ſecare o p in q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea pũctum q ipſius fruſti gra-
              <lb/>
            uitatis centrum eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0181-01" xlink:href="fig-0181-01a">
              <image file="0181-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01"/>
            </figure>
            <note position="right" xlink:label="note-0181-01" xlink:href="note-0181-01a" xml:space="preserve">3. diffi. hu
              <lb/>
            ius.</note>
            <note position="right" xlink:label="note-0181-02" xlink:href="note-0181-02a" xml:space="preserve">Vltima e-
              <lb/>
            auſdẽ libri
              <lb/>
            Archime-
              <lb/>
            dis.</note>
            <figure xlink:label="fig-0182-01" xlink:href="fig-0182-01a">
              <image file="0182-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0182-01"/>
            </figure>
            <note position="left" xlink:label="note-0182-01" xlink:href="note-0182-01a" xml:space="preserve">2. ſexti.</note>
            <note position="right" xlink:label="note-0183-01" xlink:href="note-0183-01a" xml:space="preserve">8. prim I
              <lb/>
            libri Ar-
              <lb/>
            chimedis
              <lb/>
            de cẽtro
              <lb/>
            grauita-
              <lb/>
            tis plano
              <lb/>
            runi</note>
            <note position="right" xlink:label="note-0183-02" xlink:href="note-0183-02a" xml:space="preserve">7. quinti.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit fruſtum a g à pyramide, quæ quadrangularem baſim
              <lb/>
            habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
              <lb/>
            & </s>
            <s xml:space="preserve">axis k l. </s>
            <s xml:space="preserve">diuidatur autem primũ _k_ l, ita ut quam propor-
              <lb/>
            tionem habet duplum lateris a b unà cum latere e f ad du
              <lb/>
            plum lateris e f unà cum a b; </s>
            <s xml:space="preserve">habeat k m ad m l. </s>
            <s xml:space="preserve">deinde à
              <lb/>
            púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
              <lb/>
            l o. </s>
            <s xml:space="preserve">poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
              <lb/>
            cuius baſis ſit eadem, quæ fruſti, & </s>
            <s xml:space="preserve">altitudo æqualis. </s>
            <s xml:space="preserve">Dico
              <lb/>
            punctum p fruſti a g grauitatis centrum eſſe. </s>
            <s xml:space="preserve">ducantur
              <lb/>
            enim a c, e g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">intelligantur duo fruſta triangulares ba-
              <lb/>
            ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
              <lb/>
            ſtet; </s>
            <s xml:space="preserve">alterum l h ex baſibus a c d, e g h. </s>
            <s xml:space="preserve">Sitq; </s>
            <s xml:space="preserve">fruſti l f axis
              <lb/>
            q r; </s>
            <s xml:space="preserve">in quo grauitatis centrum s: </s>
            <s xml:space="preserve">fruſti uero l h axis t u, & </s>
            <s xml:space="preserve">
              <lb/>
            x grauitatis centrum: </s>
            <s xml:space="preserve">deinde iungantur u r, t q, x s. </s>
            <s xml:space="preserve">tranſi-
              <lb/>
            bit u r per l: </s>
            <s xml:space="preserve">quoniam l eſt centrum grauitatis quadran-
              <lb/>
            guli a b c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">puncta r u grauitatis centra triangulorum
              <lb/>
            a b c, a c d; </s>
            <s xml:space="preserve">in quæ quadrangulum ipſum diuiditur. </s>
            <s xml:space="preserve">eadem
              <lb/>
            quoque ratione t q per punctum _k_ tranſibit. </s>
            <s xml:space="preserve">At uero pro
              <lb/>
            portiones, ex quibus fruſtorum grauitatis centra inquiri-
              <lb/>
            mus, eædem ſunt in toto ſruſto a g, & </s>
            <s xml:space="preserve">in fruſtis l f, l h. </s>
            <s xml:space="preserve">Sunt
              <lb/>
            enim per octauam huius quadrilatera a b c d, e f g h ſimilia:</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>