Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0190" n="190" rhead="FED. COMMANDINI"/>
            ctiones circuli ex prima propofitione ſphæricorum Theo
              <lb/>
            doſii: </s>
            <s xml:space="preserve">unus quidem circa triangulum a b c deſcriptus: </s>
            <s xml:space="preserve">al-
              <lb/>
            ter uero circa d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam triangula a b c, d e f æqua-
              <lb/>
            lia ſunt, & </s>
            <s xml:space="preserve">ſimilia; </s>
            <s xml:space="preserve">erunt ex prima, & </s>
            <s xml:space="preserve">ſecunda propoſitione
              <lb/>
            duodecimi libri elementorum, circuli quoque inter ſe ſe
              <lb/>
            æquales. </s>
            <s xml:space="preserve">poſtremo a centro g ad circulum a b c perpendi
              <lb/>
            cularis ducatur g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia perpendicularis ducatur ad cir
              <lb/>
            culum d e f, quæ ſit g _k_; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a h, d k. </s>
            <s xml:space="preserve">perſpicuum
              <lb/>
            eſt ex corollario primæ ſphæricorum Theodoſii, punctum
              <lb/>
            h centrum eſſe circuli a b c, & </s>
            <s xml:space="preserve">k centrum circuli d e f. </s>
            <s xml:space="preserve">Quo
              <lb/>
            niam igitur triangulorum g a h, g d K latus a g eſt æquale la
              <lb/>
            teri g d; </s>
            <s xml:space="preserve">ſunt enim à centro ſphæræ ad ſuperficiem: </s>
            <s xml:space="preserve">atque
              <lb/>
            eſt a h æquale d k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex ſexta propoſitione libri primi ſphæ
              <lb/>
            ricorum Theodoſii g h ipſi g K: </s>
            <s xml:space="preserve">triangulum g a h æquale
              <lb/>
            erit, & </s>
            <s xml:space="preserve">ſimile g d k triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulus a g h æqualis an-
              <lb/>
            gulo d g _K_. </s>
            <s xml:space="preserve">ſed anguli a g h, h g d ſunt æquales duobus re-
              <lb/>
              <anchor type="note" xlink:label="note-0190-01a" xlink:href="note-0190-01"/>
            ctis. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ipſi h g d, d g k duobus rectis æquales erunt.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco h g, g _K_ una, atque eadem erit linea. </s>
            <s xml:space="preserve">cum autem
              <lb/>
              <anchor type="note" xlink:label="note-0190-02a" xlink:href="note-0190-02"/>
            h ſit centrũ circuli, & </s>
            <s xml:space="preserve">tri-
              <lb/>
              <anchor type="figure" xlink:label="fig-0190-01a" xlink:href="fig-0190-01"/>
            anguli a b c grauitatis cen
              <lb/>
            trũ probabitur ex iis, quæ
              <lb/>
            in prima propoſitione hu
              <lb/>
            ius tradita funt. </s>
            <s xml:space="preserve">quare g h
              <lb/>
            erit pyramidis a b c g axis.
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ob eandem cauſſam g k
              <lb/>
            axis pyramidis d e f g. </s>
            <s xml:space="preserve">Ita-
              <lb/>
            que centrum grauitatis py
              <lb/>
            ramidis a b c g ſit púctum
              <lb/>
            l, & </s>
            <s xml:space="preserve">pyramidis d e f g ſit m. </s>
            <s xml:space="preserve">
              <lb/>
            Similiter ut ſupra demon-
              <lb/>
            ſtrabimus m g, g linter ſe æquales eſſe, & </s>
            <s xml:space="preserve">punctum g graui
              <lb/>
            tatis centrum magnitudinis, quæ ex utriſque pyramidibus
              <lb/>
            conſtat. </s>
            <s xml:space="preserve">eodem modo demonſtrabitur, quarumcunque
              <lb/>
            duarum pyramidum, quæ opponuntur, grauitatis centrũ</s>
          </p>
        </div>
      </text>
    </echo>