Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
201 45
202
203 46
204
205 47
206
207
208
209
210
211
212
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0192" n="192" rhead="FED. COMMANDINI"/>
            grauitatis eſſe punctum m. </s>
            <s xml:space="preserve">patetigitur totius dodecahe-
              <lb/>
            dri, centrum grauitatis idẽ eſſe, quod & </s>
            <s xml:space="preserve">ſphæræ ipſum com
              <lb/>
            prehendentis centrum. </s>
            <s xml:space="preserve">quæ quidem omnia demonſtraſſe
              <lb/>
            oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="5">
            <figure xlink:label="fig-0191-01" xlink:href="fig-0191-01a">
              <image file="0191-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0191-01"/>
            </figure>
            <note position="right" xlink:label="note-0191-01" xlink:href="note-0191-01a" xml:space="preserve">corol. pri
              <lb/>
            mæ ſphæ
              <lb/>
            ricorum
              <lb/>
            Theod.</note>
            <note position="right" xlink:label="note-0191-02" xlink:href="note-0191-02a" xml:space="preserve">6. primi
              <lb/>
            phærico
              <lb/>
            rum.</note>
          </div>
        </div>
        <div type="section" level="1" n="93">
          <head xml:space="preserve">PROBLEMA VI. PROPOSITIO XX VIII.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">Data</emph>
            qualibet portione conoidis rectangu
              <lb/>
            li, abſciſſa plano ad axem recto, uel non recto; </s>
            <s xml:space="preserve">fie-
              <lb/>
            ri poteſt, ut portio ſolida inſcribatur, uel circum-
              <lb/>
            ſcribatur ex cylindris, uel cylindri portionibus,
              <lb/>
            æqualem habentibus altitudinem, ita ut recta li-
              <lb/>
            nea, quæ inter centrum grauitatis portionis, & </s>
            <s xml:space="preserve">
              <lb/>
            figuræ inſcriptæ, uel circumſcriptæ interiicitur,
              <lb/>
            ſit minor qualibet recta linea propoſita.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit portio conoidis rectanguli a b c, cuius axis b d, gra-
              <lb/>
            uitatisq; </s>
            <s xml:space="preserve">centrum e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">fit g recta linea propoſita. </s>
            <s xml:space="preserve">quam ue
              <lb/>
            ro proportionem habet linea b e ad lineam g, eandem ha-
              <lb/>
            beat portio conoidis ad ſolidum h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">circumſcribatur por
              <lb/>
            tioni figura, ſicuti dictum eſt, ita ut portiones reliquæ ſint
              <lb/>
            ſolido h minores: </s>
            <s xml:space="preserve">cuius quidem figuræ centrum grauitatis
              <lb/>
            ſit punctum
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">Dico lineã k e minorem eſſe linea g propo-
              <lb/>
            ſita. </s>
            <s xml:space="preserve">niſi enim ſit minor, uel æqualis, uel maior erit. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quo-
              <lb/>
            niam figura circumſcripta ad reliquas portiones maiorem
              <lb/>
              <anchor type="note" xlink:label="note-0192-01a" xlink:href="note-0192-01"/>
            proportionem habet, quàm portio conoidis ad ſolidum h;
              <lb/>
            </s>
            <s xml:space="preserve">hoc eſt maiorem, quàm b c ad g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b e ad g non minorem
              <lb/>
            habet proportionem, quàm ad _k_ e, propterea quod k e non
              <lb/>
            ponitur minor ipſa g: </s>
            <s xml:space="preserve">habebit figura circumſcripta ad por
              <lb/>
            tiones reliquas maiorem proportionem quàm b e ad e k: </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="note" xlink:label="note-0192-02a" xlink:href="note-0192-02"/>
            & </s>
            <s xml:space="preserve">diuidendo portio conoidis ad reliquas portiones habe-
              <lb/>
            bit maiorem, quàm b
              <emph style="sc">K</emph>
            ad K e. </s>
            <s xml:space="preserve">quare ſi fiat ut portio co-</s>
          </p>
        </div>
      </text>
    </echo>