Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
111
112
113
(1)
114
115
(2)
116
117
(3)
118
119
(4)
120
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
do
in
reliquis
figuris
æquilateris
, &
æquiangulis,
quæ
in
cir-
culo
deſcribuntur
,
probabimus
cẽtrum
grauitatis
earum
,
&
centrum
circuli
idem
eſſe
.
quod
quidem
demonſtrare
oportebat
.
Ex
quibus
apparet
cuiuslibet
figuræ
rectilineæ
in
circulo
plane
deſcriptæ
centrum
grauitatis
idẽ
eſſe
,
quod
&
circuli
centrum
.
Figuram
in
circulo
plane
deſcriptam
appella-
γνωρ@ μω@
mus
,
cuiuſmodi
eſt
ea
,
quæ
in
duodecimo
elemen
torum
libro
,
propoſitione
ſecunda
deſcribitur
.
ex
æqualibus
enim
lateribus
, &
angulis
conſtare
perſpicuum
eſt
.
THEOREMA
II
.
PROPOSITIO
II
.
Omnis
figuræ
rectilineæ
in
ellipſi
plane
deſcri-
ptæ
centrum
grauitatis
eſt
idem
,
quod
ellipſis
centrum
.
Quo
modo
figura
rectilinea
in
ellipſi
plane
deſcribatur
,
docuimus
in
commentarijs
in
quintam
propoſitionem
li-
bri
Archimedis
de
conoidibus, &
ſphæroidibus.
Sit
ellipſis
a
b
c
d
,
cuius
maior
axis
a
c
,
minor
b
d
:
iun-
ganturq́;
a
b
,
b
c
,
c
d
,
d
a
:
&
bifariam
diuidantur
in
pun-
ctis
e
f
g
h
.
à
centro
autem
,
quod
ſit
k
ductæ
lineæ
k
e
,
k
f
,
k
g
,
k
h
uſque
ad
ſectionem
in
puncta
l
m
n
o
protrahan-
tur
:
&
iungantur
l
m
,
m
n
,
n
o
,
o
l
,
ita
ut
a
c
ſecet
li-
neas
l
o
,
m
n
,
in
z
φ
punctis
, &
b
d
ſecet
l
m
,
o
n
in
χ ψ.
erunt
l
k
,
k
n
linea
una
,
itemq́ue
linea
unaipſæ
m
k
,
k
o
:
&
lineæ
b
a
,
c
d
æquidiſtabunt
lineæ
m
o
:
&
b
c
,
a
d
ipſi
l
n
.
rurſus
l
o
,
m
n
axi
b
d
æquidiſtabunt:
&
l
m
,
Text layer
Dictionary
Text normalization
Original
Search
Exact
All forms
Fulltext index
Morphological index