Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
ſunt
uertice
,
eandem
proportionem
habent
,
quam
ipſarũ
baſes
.
eadem
ratione
pyramis
a
c
l
k
pyramidi
b
c
l
k
:
&
py
ramis
a
d
l
k
ipſi
b
d
l
k
pyramidi
æqualis
erit
.
Itaque
ſi
a
py
ramide
a
c
l
d
auferantur
pyramides
a
clk,
a
d
l
k
:
&
à
pyra
mide
b
c
l
d
auferãtur
pyramides
b
c
l
k
,
d
b
l
K
:
quæ
relin-
quuntur
erunt
æqualia
.
æqualis
igitur
eſt
pyramis
a
c
d
k
pyramidi
b
c
d
_K_.
Rurſus
ſi
per
lineas
a
d
,
d
e
ducatur
pla-
num
quod
pyramidem
ſecet
:
ſitq;
eius
&
baſis
communis
ſectio
a
e
m
:
ſimiliter
oſtendetur
pyramis
a
b
d
K
æqualis
pyramidi
a
c
d
K
.
ducto
denique
alio
piano
per
lineas
c
a
,
a
f
:
ut
eius
, &
trianguli
c
d
b
communis
ſectio
ſit
c
fn,
py-
ramis
a
b
c
k
pyramidi
a
c
d
K
æqualis
demonſtrabitur
.
cũ
ergo
tres
pyramides
b
c
d
_k_,
a
b
d
k
,
a
b
c
k
uni
, &
eidem
py
ramidia
c
d
k
ſint
æquales
,
omnes
inter
ſe
ſe
æquales
erũt
.
Sed
ut
pyramis
a
b
c
d
ad
pyramidem
a
b
c
k
,
ita
d
e
axis
ad
axem
k
e
, ex
uigeſima
propoſitione
huius
:
ſunt
enim
hæ
pyramides
in
eadem
baſi
, &
axes
cum
baſibus
æquales
con
tinent
angulos
,
quòd
in
eadem
recta
linea
conſtituantur
.
quare
diuidendo
,
ut
tres
pyramides
a
c
d
k
,
b
c
d
_K_,
a
b
d
_K_
ad
pyramidem
a
b
c
_K_,
ita
d
_k_
ad
_K_
e
.
conſtat
igitur
lineam
d
K
ipſius
_K_
e
triplam
eſſe
.
ſed
&
a
k
tripla
eſt
K
f
:
itemque
b
K
ipſius
_K_
g
:
&
c
K
ipſius
K
l
tripla
.
quod
eodem
modo
demonſtrabimus
.
Sit
pyramis
,
cuius
baſis
quadrilaterum
a
b
c
d
;
axis
e
f
:
&
diuidatur
e
fin
g
,
ita
ut
e
g
ipſius
g
f
ſit
tripla
.
Dico
cen-
trum
grauitatis
pyramidis
eſſe
punctum
g
.
ducatur
enim
linea
b
d
diuidens
baſim
in
duo
triangula
a
b
d
,
b
c
d
:
ex
quibus
intelligãtur
cõſtitui
duæ
pyramides
a
b
d
e
,
b
c
d
e
:
ſitque
pyramidis
a
b
d
e
axis
e
h
;
&
pyramidis
b
c
d
e
axis
e
K
:
&
iungatur
h
_K_,
quæ
per
ftranſibit:
eſt
enim
in
ipſa
h
K
centrum
grauitatis
magnitudinis
compoſitæ
ex
triangulis
a
b
d
,
b
c
d
,
hoc
eſt
ipſius
quadrilateri
.
Itaque
centrum
gra
uitatis
pyramidis
a
b
d
e
ſit
punctum
l
:
&
pyramidis
b
c
d
e
ſit
m
.
ductaigitur
l
m
ipſi
h
m
lineæ
æquidiſtabit:
nam
el
ad
2. ſexti.
Text layer
Dictionary
Text normalization
Original
Search
Exact
All forms
Fulltext index
Morphological index