Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < of 213 > >|
170FED. COMMANDINI& denique punctum h pyramidis a b c d e f grauitatis eſſe
centrum, &
ita in aliis.
Sit conus, uel coni portio axem habens b d: ſecetur que
plano per axem, quod ſectionem faciat triangulum a b c:
& b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla.
Dico punctum e coni, uel coni portionis, grauitatis
eſſe centrum.
Sienim fieri poteſt, ſit centrum f: & pro-
ducatur e f extra figuram in g.
quam uero proportionem
habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
cium, in quo h.
Itaque in circulo, uel ellipſi plane deſcri-
batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
tur portiones ſint minores ſpacio h:
& intelligatur pyra-
mis baſim habens rectilineam figuram a K l m c n o p, &

axem b d;
cuius quidem grauitatis centrum erit punctum
e, ut iam demonſtrauimus.
Et quoniam portiones ſunt
minores ſpacio h, circulus, uel ellipſis ad portiones ma-
125[Figure 125] iorem proportionem habet, quam g e a d e f.
ſed ut circu-
lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
conus, uel coni portio ad pyramidem, quæ figuram rectili-
neam pro baſi habet;
& altitudinem æqualem: etenim

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index