Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
191 40
192
193 41
194
195 42
196
197 43
198
199 44
200
< >
page |< < of 213 > >|
176FED. COMMANDINI pyramidem, uel conum, uel coni portionem candem pro-
portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
ſim a b.
quod demonſtrare uolebamus.
Fruſtum uero a d æquale eſſe pyramidi, uel co
no, uel coni portioni, cuius baſis conſtat ex baſi-
bus a b, c d, e f, &
altitudo fruſti altitudini eſt æ-
qualis, hoc modo oſten demus.
Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
gulum a b c;
minor d e f: & ſecetur plano baſibus æquidi-
ſtante, quod ſectionem faciat triangulum g h k inter trian-
gula a b c, d e f proportionale.
Iam ex iis, quæ demonſtrata
ſuntin 23.
huius, patet ſruſtum a b c d e f diuidi in tres pyra
mides proportionales;
& earum maiorem eſſe pyramidẽ
a b c d minorẽ uero d e f b.
ergo pyramis à triangulo g h k
conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
lem, proportionalis eſtinter pyramides a b c d, d e f b:
&
idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
le erit.
Itaque ſi intelligatur alia pyra-
131[Figure 131] mis æque alta, quæ baſim habeat ex tri
bus baſibus a b c, d e f, g h k conſtan-
tem;
perſpicuum eſtipſam eiſdem py-
ramidibus, &
propterea ipſi fruſto æ-
qualem eſſe.
Rurſus ſit ſruſtum pyramidis a g, cu
ius maior baſis quadrilaterum a b c d,
minor e f g h:
& ſecetur plano baſi-
bus æquidiſtante, ita ut fiat ſectio qua-
drilaterum K lm n, quod ſit proportio
nale inter quadrilatera a b c d, e f g h.
Dico pyramidem,
cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
e f g h, &
altitudo æqualis altitudini fruſti, ipſi fruſto a g
æqualem eſſe.
Ducatur enim planum per lineas f b, h

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index