Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (5) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb o="5" file="0121" n="121" rhead="DE CENTRO GRAVIT. SOLID."/>
            quo ſcilicet ln, om conueniunt. </s>
            <s xml:space="preserve">Poſtremo in figura
              <lb/>
            a p l q b r m s c t n u d x o y centrum grauitatis trian
              <lb/>
            guli pay, & </s>
            <s xml:space="preserve">trapezii ploy eſtin linea a z: </s>
            <s xml:space="preserve">trapeziorum
              <lb/>
            uero lqxo, q b d x centrum eſtin linea z k: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trapeziorũ
              <lb/>
            b r u d, r m n u in k φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">denique trapezii m s t n; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu
              <lb/>
            li s c t in φ c. </s>
            <s xml:space="preserve">quare magnitudinis ex his compoſitæ centrū
              <lb/>
            in linea a c conſiſtit. </s>
            <s xml:space="preserve">Rurſus trianguli q b r, & </s>
            <s xml:space="preserve">trapezii q l
              <lb/>
            m r centrum eſt in linea b χ: </s>
            <s xml:space="preserve">trapeziorum l p s m, p a c s,
              <lb/>
            a y t c, y o n t in linea χ φ: </s>
            <s xml:space="preserve">trapeziiq; </s>
            <s xml:space="preserve">o x u n, & </s>
            <s xml:space="preserve">trianguli
              <lb/>
            x d u centrum in ψ d. </s>
            <s xml:space="preserve">totius ergo magnitudinis centrum
              <lb/>
            eſtin linea b d. </s>
            <s xml:space="preserve">ex quo ſequitur, centrum grauitatis figuræ
              <lb/>
            a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
              <lb/>
            b d commune, quæ omnia demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="right" xlink:label="note-0119-01" xlink:href="note-0119-01a" xml:space="preserve">8. primi</note>
            <figure xlink:label="fig-0119-01" xlink:href="fig-0119-01a">
              <image file="0119-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01"/>
            </figure>
            <note position="right" xlink:label="note-0119-02" xlink:href="note-0119-02a" xml:space="preserve">33. primit</note>
            <note position="left" xlink:label="note-0120-01" xlink:href="note-0120-01a" xml:space="preserve">28. primi.</note>
            <figure xlink:label="fig-0120-01" xlink:href="fig-0120-01a">
              <image file="0120-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01"/>
            </figure>
            <note position="left" xlink:label="note-0120-02" xlink:href="note-0120-02a" xml:space="preserve">13. Archi
              <lb/>
            medis.</note>
            <note position="left" xlink:label="note-0120-03" xlink:href="note-0120-03a" xml:space="preserve">Vltima.</note>
          </div>
        </div>
        <div type="section" level="1" n="66">
          <head xml:space="preserve">THE OREMA III. PROPOSITIO III.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portio-
              <lb/>
              <anchor type="figure" xlink:label="fig-0121-01a" xlink:href="fig-0121-01"/>
            nis circuli, & </s>
            <s xml:space="preserve">ellipſis,
              <lb/>
            quæ dimidia non ſit
              <lb/>
            maior, centrum graui
              <lb/>
            tatis in portionis dia-
              <lb/>
            metro conſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0121-01" xlink:href="fig-0121-01a">
              <image file="0121-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0121-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">HOC eodem prorſus
              <lb/>
            modo demonſtrabitur,
              <lb/>
            quo in libro de centro gra
              <lb/>
            uitatis planorum ab Ar-
              <lb/>
            chimede demonſtratũ eſt,
              <lb/>
            in portione cõtenta recta
              <lb/>
            linea, & </s>
            <s xml:space="preserve">rectanguli coni ſe
              <lb/>
            ctione grauitatis cẽtrum
              <lb/>
            eſſe in diametro portio-
              <lb/>
            nis. </s>
            <s xml:space="preserve">Etita demonſtrari po
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0121-02a" xlink:href="hd-0121-02"/>
            </s>
          </p>
        </div>
      </text>
    </echo>