Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0132" n="132" rhead="FED. COMMANDINI"/>
            centrum z: </s>
            <s xml:space="preserve">parallelogram mi a d, θ: </s>
            <s xml:space="preserve">parallelogrammi f g, φ:
              <lb/>
            </s>
            <s xml:space="preserve">parallelogrammi d h, χ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0132-01a" xlink:href="fig-0132-01"/>
            parallelogrammi c g centrũ
              <lb/>
            ψ: </s>
            <s xml:space="preserve">atque erit ω punctum me
              <lb/>
            dium uniuſcuiuſque axis, ui
              <lb/>
            delicet eius lineæ, quæ oppo
              <lb/>
            ſitorum planorũ centra con
              <lb/>
            iungit. </s>
            <s xml:space="preserve">Dico ω centrum effe
              <lb/>
            grauitatis ipſius ſolidi. </s>
            <s xml:space="preserve">eſt
              <lb/>
            enim, ut demonſtrauimus,
              <lb/>
              <anchor type="note" xlink:label="note-0132-01a" xlink:href="note-0132-01"/>
            ſolidi a f centrum grauitatis
              <lb/>
            in plano K n; </s>
            <s xml:space="preserve">quod oppoſi-
              <lb/>
            tis planis a d, g f æ quidiſtans
              <lb/>
            reliquorum planorum late-
              <lb/>
            ra biſariam diuidit: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">fimili
              <lb/>
            rationeidem centrum eſt in plano o r, æ quidiſtante planis
              <lb/>
            a e, b f oppo ſitis. </s>
            <s xml:space="preserve">ergo in communi ipſorum fectione: </s>
            <s xml:space="preserve">ui-
              <lb/>
            delicet in linea y z. </s>
            <s xml:space="preserve">Sed eſt etiam in plano t u, quod quidẽ
              <lb/>
            y z ſecat in ω. </s>
            <s xml:space="preserve">Conſtat igitur centrum grauitatis ſolidi eſſe
              <lb/>
            punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
              <lb/>
            planorum oppoſitorum centra coniungunt.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0132-01" xlink:href="fig-0132-01a">
              <image file="0132-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0132-01"/>
            </figure>
            <note position="left" xlink:label="note-0132-01" xlink:href="note-0132-01a" xml:space="preserve">6. huius</note>
          </div>
          <p>
            <s xml:space="preserve">Sit aliud prima a f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in eo plana, quæ opponuntur, tri-
              <lb/>
            angula a b c, d e f: </s>
            <s xml:space="preserve">diuiſisq; </s>
            <s xml:space="preserve">bifariam parallelogrammorum
              <lb/>
            lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
              <lb/>
            ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
              <lb/>
            triangulum g h k æ quale, & </s>
            <s xml:space="preserve">ſimile ipſis a b c, d e f. </s>
            <s xml:space="preserve">Rurſus
              <lb/>
            diuidatur a b bifariam in l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta c l per ipſam, & </s>
            <s xml:space="preserve">per
              <lb/>
            c _K_ f planum ducatur priſma ſecans, cuius, & </s>
            <s xml:space="preserve">parallelogrã
              <lb/>
            mi a e communis ſcctio ſit l m n. </s>
            <s xml:space="preserve">diuidet pun ctum m li-
              <lb/>
            neam g h bifariam; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita n diuidet lineam d e: </s>
            <s xml:space="preserve">quoniam
              <lb/>
            triangula a c l, g k m, d f n æ qualia ſunt, & </s>
            <s xml:space="preserve">ſimilia, ut ſu pra
              <lb/>
              <anchor type="note" xlink:label="note-0132-02a" xlink:href="note-0132-02"/>
            demonſtrauimus. </s>
            <s xml:space="preserve">Iam ex iis, quæ tradita ſunt, conſtat cen
              <lb/>
            trum greuitatis priſmatis in plano g h k contineri. </s>
            <s xml:space="preserve">Dico
              <lb/>
            ipſum eſſe in linea k m. </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit o centrum;</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>