Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (14) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="14" file="0139" n="139" rhead="DE CENTRO GRAVIT. SOLID."/>
            ſimiliter demonſtrabitur totius priſmatis a _K_ grauitatis eſ
              <lb/>
            ſe centrum. </s>
            <s xml:space="preserve">Simili ratione & </s>
            <s xml:space="preserve">in aliis priſinatibus illud
              <lb/>
            idem ſacile demonſtrabitur. </s>
            <s xml:space="preserve">Quo autem pacto in omni
              <lb/>
            figura rectilinea centrum grauitatis inueniatur, do cuimus
              <lb/>
            in commentariis in ſextam propoſitionem Archimedis de
              <lb/>
            quadratura parabolæ.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="4">
            <figure xlink:label="fig-0138-01" xlink:href="fig-0138-01a">
              <image file="0138-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit cylindrus, uel cylindri portio c e cuius axis a b: </s>
            <s xml:space="preserve">ſece-
              <lb/>
            turq, plano per axem ducto; </s>
            <s xml:space="preserve">quod ſectionem faciat paral-
              <lb/>
            lelo grammum c d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuiſis c f, d e bifariam in punctis
              <lb/>
              <anchor type="figure" xlink:label="fig-0139-01a" xlink:href="fig-0139-01"/>
            g h, per ea ducatur planum baſi æquidiſtans. </s>
            <s xml:space="preserve">erit ſectio g h
              <lb/>
            circulus, uel ellipſis, centrum habens in axe; </s>
            <s xml:space="preserve">quod ſit K: </s>
            <s xml:space="preserve">at-
              <lb/>
              <anchor type="note" xlink:label="note-0139-01a" xlink:href="note-0139-01"/>
            que erunt ex iis, quæ demonſtrauimus, centra grauitatis
              <lb/>
            planorum oppoſitorum puncta a b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">plani g h ipſum _k_. </s>
            <s xml:space="preserve">in
              <lb/>
            quo quidem plano eſt centrum grauitatis cylindri, uel cy-
              <lb/>
            lindri portionis. </s>
            <s xml:space="preserve">Dico punctum K cylindri quoque, uel cy
              <lb/>
            lindri portionis grauitatis centrum eſſe. </s>
            <s xml:space="preserve">Si enim fieri po-
              <lb/>
            teſt, ſitl centrum: </s>
            <s xml:space="preserve">ducaturq; </s>
            <s xml:space="preserve">k l, & </s>
            <s xml:space="preserve">extra figuram in m pro-
              <lb/>
            ducatur. </s>
            <s xml:space="preserve">quam uero proportionem habet linea m K ad _k_ l</s>
          </p>
        </div>
      </text>
    </echo>