Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
151
(20)
152
153
(21)
154
155
(22)
156
157
(23)
158
159
(24)
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3973
"
xml:space
="
preserve
">
<
pb
file
="
0160
"
n
="
160
"
rhead
="
FED. COMMANDINI
"/>
æqualibus baſibus, quorum axes cum baſibus æquales an
<
lb
/>
gulos faciant. </
s
>
<
s
xml:id
="
echoid-s3974
"
xml:space
="
preserve
">Dico ſolidum a b adſolidũ c d ita eſſe, ut axis
<
lb
/>
e f ad axem g h: </
s
>
<
s
xml:id
="
echoid-s3975
"
xml:space
="
preserve
">nam ſi axes ad planum baſis recti ſint, il-
<
lb
/>
lud perſpicue conſtat: </
s
>
<
s
xml:id
="
echoid-s3976
"
xml:space
="
preserve
">quoniam eadem linea, & </
s
>
<
s
xml:id
="
echoid-s3977
"
xml:space
="
preserve
">axem & </
s
>
<
s
xml:id
="
echoid-s3978
"
xml:space
="
preserve
">ſoli
<
lb
/>
di altitudinem determinabit. </
s
>
<
s
xml:id
="
echoid-s3979
"
xml:space
="
preserve
">Si uero ſintinclinati, à pun-
<
lb
/>
ctis e g ad ſubiectum planum perpendiculares ducantur
<
lb
/>
e k, g l: </
s
>
<
s
xml:id
="
echoid-s3980
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3981
"
xml:space
="
preserve
">iungantur f_k_, h l. </
s
>
<
s
xml:id
="
echoid-s3982
"
xml:space
="
preserve
">rurſus quoniam axes cum ba
<
lb
/>
ſibus æquales faciunt angulos, eodem modo demonſtrabi
<
lb
/>
tur, triangulum e f K triangulo g h l ſimile eſſe: </
s
>
<
s
xml:id
="
echoid-s3983
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3984
"
xml:space
="
preserve
">e k ad g l,
<
lb
/>
ut e f ad g h. </
s
>
<
s
xml:id
="
echoid-s3985
"
xml:space
="
preserve
">Solidum autem a b ad ſolidum c d eſt, ut
<
lb
/>
e K ad g l. </
s
>
<
s
xml:id
="
echoid-s3986
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s3987
"
xml:space
="
preserve
">ut axis e f ad axem g h. </
s
>
<
s
xml:id
="
echoid-s3988
"
xml:space
="
preserve
">quæ omnia de
<
lb
/>
monſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3989
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3990
"
xml:space
="
preserve
">Ex iis quæ demonſtrata ſunt, facile conſtare
<
lb
/>
poteſt, priſmata omnia & </
s
>
<
s
xml:id
="
echoid-s3991
"
xml:space
="
preserve
">pyramides, quæ trian-
<
lb
/>
gulares baſes habent, ſiue in eiſdem, ſiue in æqua
<
lb
/>
libus baſibus conſtituantur, eandem proportio-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0160-01
"
xlink:href
="
note-0160-01a
"
xml:space
="
preserve
">15. quinti</
note
>
nem habere, quam altitudines: </
s
>
<
s
xml:id
="
echoid-s3992
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3993
"
xml:space
="
preserve
">ſi axes cum ba
<
lb
/>
ſibus æquales angulos contineant, ſimiliter ean-
<
lb
/>
dem, quam axes, habere proportionem: </
s
>
<
s
xml:id
="
echoid-s3994
"
xml:space
="
preserve
">ſunt
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0160-02
"
xlink:href
="
note-0160-02a
"
xml:space
="
preserve
">28. unde-
<
lb
/>
cimi.</
note
>
enim ſolida parallelepipeda priſmatum triangula
<
lb
/>
res baſes habentiũ dupla; </
s
>
<
s
xml:id
="
echoid-s3995
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3996
"
xml:space
="
preserve
">pyramidum ſextupla.</
s
>
<
s
xml:id
="
echoid-s3997
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
left
"
xml:space
="
preserve
">7. duode-
<
lb
/>
cimi.</
note
>
</
div
>
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
head
xml:id
="
echoid-head92
"
xml:space
="
preserve
">THE OREMA XVI. PROPOSITIO XX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3998
"
xml:space
="
preserve
">Priſmata omnia & </
s
>
<
s
xml:id
="
echoid-s3999
"
xml:space
="
preserve
">pyramides, quæ in eiſdem,
<
lb
/>
uel æqualibus baſibus conſtituuntur, eam inter
<
lb
/>
ſe proportionem habent, quam altitudines: </
s
>
<
s
xml:id
="
echoid-s4000
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4001
"
xml:space
="
preserve
">ſi
<
lb
/>
axes cum baſibus faciant angulos æquales, eam
<
lb
/>
etiam, quam axes habent proportionem.</
s
>
<
s
xml:id
="
echoid-s4002
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>