Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (26) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="85">
          <p>
            <s xml:space="preserve">
              <pb o="26" file="0163" n="163" rhead="DE CENTRO GRAVIT. SOLID."/>
            matis a e axis g h; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſmatis a f axis l h. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma a f eam proportionem habere, quam g h ad
              <lb/>
            h l. </s>
            <s xml:space="preserve">ducantur à punctis g l perpendiculares ad baſis pla-
              <lb/>
            num g K, l m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur k h,
              <lb/>
              <anchor type="figure" xlink:label="fig-0163-01a" xlink:href="fig-0163-01"/>
            h m. </s>
            <s xml:space="preserve">Itaque quoniam anguli g h
              <lb/>
            k, l h m ſunt æquales, ſimiliter ut
              <lb/>
            ſupra demonſtrabimus, triangu-
              <lb/>
            la g h K, l h m ſimilia eſſe; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut g
              <lb/>
            K adlm, ita g h ad h l. </s>
            <s xml:space="preserve">habet au
              <lb/>
            tem priſma a e ad priſma a f ean
              <lb/>
            dem proportionem, quam altitu
              <lb/>
            do g k ad altitudinem l m, ſicuti
              <lb/>
            demonſtratum eſt. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">ean-
              <lb/>
            dem habebit, quam g h, ad h l. </s>
            <s xml:space="preserve">py
              <lb/>
            ramis igitur a b c d g ad pyrami-
              <lb/>
            dem a b c d l eandem proportio-
              <lb/>
            nem habebit, quam axis g h ad h l axem.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0163-01" xlink:href="fig-0163-01a">
              <image file="0163-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01"/>
            </figure>
          </div>
          <figure>
            <image file="0163-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02"/>
          </figure>
          <p>
            <s xml:space="preserve">Denique ſint priſmata a e, k o in æqualibus baſibus a b
              <lb/>
            c d, k l m n conſtituta; </s>
            <s xml:space="preserve">quorum axes cum baſibus æquales
              <lb/>
            faciant angulos: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">priſmatis a e axis f g, & </s>
            <s xml:space="preserve">altitudo f h:
              <lb/>
            </s>
            <s xml:space="preserve">priſmatis autem k o axis p q, & </s>
            <s xml:space="preserve">altitudo p r. </s>
            <s xml:space="preserve">Dico priſma
              <lb/>
            a e ad priſma k o ita eſſe, ut f g ad p q. </s>
            <s xml:space="preserve">iunctis enim g h,</s>
          </p>
        </div>
      </text>
    </echo>