Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < (27) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="86">
          <p>
            <s xml:space="preserve">
              <pb o="27" file="0165" n="165" rhead="DE CENTRO GRAVIT. SOLID."/>
            proportionem habet, quam baſis a b c d ad baſim g h k l:
              <lb/>
            </s>
            <s xml:space="preserve">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
              <lb/>
            bebunt hæ inter ſe proportionem eandem, quam ipſarum
              <lb/>
            baſes ex ſexta duodecimi elementorum. </s>
            <s xml:space="preserve">Sed ut baſis a b c d
              <lb/>
            ad g h K l baſim, ita linea o ad lineam p; </s>
            <s xml:space="preserve">hoc eſt ad lineam q
              <lb/>
            ei æqualem. </s>
            <s xml:space="preserve">ergo priſma a e ad priſma g m eſt, ut linea o
              <lb/>
            ad lineam q. </s>
            <s xml:space="preserve">proportio autem o ad q cõpoſita eſt ex pro-
              <lb/>
            portione o ad p, & </s>
            <s xml:space="preserve">ex proportione p ad q. </s>
            <s xml:space="preserve">quare priſma
              <lb/>
            a e ad priſma g m, & </s>
            <s xml:space="preserve">idcirco pyramis a b c d e, ad pyrami-
              <lb/>
            dem g h K l m proportionem habet ex eiſdem proportio-
              <lb/>
            nibus compoſitam, uidelicet ex proportione baſis a b c d
              <lb/>
            ad baſim g h _K_ l, & </s>
            <s xml:space="preserve">ex proportione altitudinis e f ad m n al
              <lb/>
            titudinem. </s>
            <s xml:space="preserve">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
              <lb/>
            e f minor: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut e f ad m n, ita fiat linea p ad lineam u: </s>
            <s xml:space="preserve">de
              <lb/>
              <anchor type="figure" xlink:label="fig-0165-01a" xlink:href="fig-0165-01"/>
            inde ab ipſa m n abſcindatur r n æqualis e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per r duca-
              <lb/>
            tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
              <lb/>
            ctionem s t. </s>
            <s xml:space="preserve">erit priſma a e, ad priſma g t, ut baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">hoc eſt ut o ad p: </s>
            <s xml:space="preserve">ut autem priſma g t ad
              <lb/>
            priſma g m, ita altitudo r n; </s>
            <s xml:space="preserve">hoc eſt e f ad altitudinẽ m n;
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0165-01a" xlink:href="note-0165-01"/>
            uidelicet linea p ad lineam u. </s>
            <s xml:space="preserve">ergo ex æquali priſma a e ad
              <lb/>
            priſma g m eſt, ut linea o ad ipſam u. </s>
            <s xml:space="preserve">Sed proportio o ad
              <lb/>
            u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex proportione p ad u, quæ eſt altitudi-
              <lb/>
            nis e f ad altitudinem m n. </s>
            <s xml:space="preserve">priſma igitur a e ad priſma g m</s>
          </p>
        </div>
      </text>
    </echo>